UKNAL OF BREASI F

European Journal of Breast Health

Breast Cancer in Turkey

Özmen et al; İstanbul, Antalya, Turkey; Florida, USA

Breast Cancer in Young Women

Durhan et al; Ankara, Turkey

3D ABUS: Timing of Examination

Arslan et al: *İstanbul, Turkev*

MLDF Reconstruction on Shoulder Functions

Duymaz et al; İstanbul, Turkey

Oncotype Dx in Breast Cancer

Thibodeau and Voutsadakis; Ontario, Canada

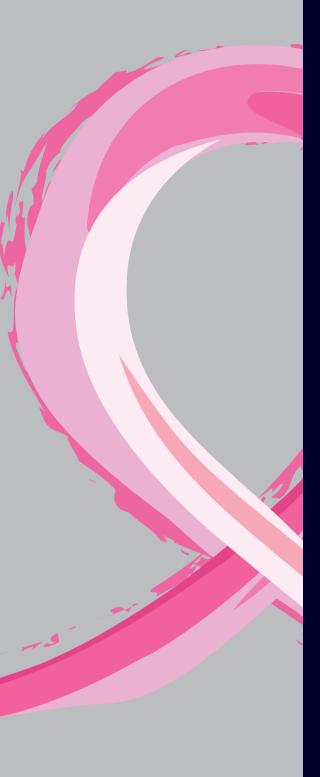
Breast Hamartomas

Türkyılmaz et al; Edirne, İstanbul, Turkey

Benign Fibroepithelial Lesions

Durhan et al; Ankara, Turkey

Cost Effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer


Özmen et al; İstanbul, İzmir, Antalya, Ankara, Kayseri, Diyarbakır, Turkey

Editor-in Chief

Vahit ÖZMEN, Turkey

Editor

Atilla SORAN, USA

E-ISSN 2587-0831

Société Internacionale de Sénologie

Senologic International Society

Global Federation of Breast Healthcare Societies

SIS is the official supporter of the European Journal of Breast Health

Société Internacionale de Sénologie

Senologic International Society

Global Federation of Breast Healthcare Societies

SIS is the official supporter of the European Journal of Breast Health

TMHDF

European Journal of Breast Health is the official journal of the TURKISH FEDERATION OF BREAST DISEASES SOCIETIES

Contact

Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, C Service Çapa / İstanbul Phone&Fax: + 90 212 534 02 10

Editor in Chief

Vahit Özmen

istanbul University istanbul Faculty of Medicine, istanbul, Turkey

Editor

Atilla Soran

University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, PA, USA

Associate Editors

Nilüfer Güler

Emeritus, Hacettepe University School of Medicine, Ankara, Turkey

Gürsel Soybir

Namık Kemal University School of Medicine, Tekirdağ, Turkey

Erkin Arıbal

Acıbadem University School of Medicine, İstanbul, Turkey

Osman Zekioğlu

Ege University School of Medicine, İzmir, Turkey

Ahmet Öber

Emeritus, İstanbul University Cerrahpaşa School of Medicine, İstanbul, Turkey

Biostatistics Editors

Birol Topcu

Namık Kemal University School of Medicine, Tekirdağ, Turkey

Ertan Koç

Statistics Academy, istanbul, Turkey

Editorial Assistant

Güldeniz Karadeniz Çakmak

Editing Manager

Nilgün Sarı

European Journal of Breast Health indexed in PubMed Central, Web of Science-Emerging Sources Citation Index, TUBITAK ULAKBIM TR Index, Embase, EBSCO, CINAHL.

Publisher İbrahim KARA

Gizem KAYAN

Ali ŞAHİN

Publication Director

Editorial Development

Finance and Administration Zeynep YAKIŞIRER ÜREN

Deputy Publication Director Gökhan ÇİMEN

Publication Coordinators

Betül ÇİMEN Özlem ÇAKMAK Okan AYDOĞAN İrem DELİÇAY Arzu YILDIRIM

Project Coordinators

Sinem KOZ Doğan ORUÇ

Graphics Department

Ünal ÖZER Deniz DURAN Beyzanur KARABULUT

Contact

Address: Büyükdere Cad. No: 105/9 34394

Mecidiyeköy, Şişli, İstanbul, Turkey

Phone :+90 212 217 17 00
Fax :+90 212 217 22 92
E-mail :info@avesyayincilik.com

Editorial Advisory Board

Alexander Mundinger

Department of Radiology and Breast Centre, Niels Stensen Clinics, Osnabrück, Germany

Alexandru Eniu

Cancer Institute, Cluj-Napoca, Romania

Ayşegül Şahin

The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Banu Arun

The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Barbara Lynn Smith

Massachusetts General Hospital, Boston, MA, USA

Basak E. Doğan

University of Texas Southwestern Medical School, Dallas, TX, USA

Bekir Kuru

Ondokuz Mayıs University School of Medicine, Samsun, Turkey

Bolivar Arboleda

HIMA San Pablo Breast Institute-Caguas, Puerto Rico, USA

David Atallah

Department of Obstetrics and Gynecology, Hotel Dieu de France University Hospital, Saint Joseph University, Beirut, Lebanon

Edward Sauter

Director of Breast Surgery, Hartford Healthcare Visiting Professor, University of Connecticut School of Medicine, Hartford, Connecticut, USA

Eisuke Fukuma

Breast Center, Kameda Medical Center, Kamogawa, Chiba, Japan

Eli Avisar

Division of SurgicalOncology, Miller School of Medicine University of Miami, Florida, USA

Hasan Karanlık

İstanbul University Oncology Institue, İstanbul, Turkey

Hideko Yamauchi

St. Luke's International Hospital, Tokyo, Japan

Ismail Jatoi

Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center, Texas, USA

Jeffrey Falk

St. John Hospitaland Medical Center, Detroit, MI, USA

John R. Keyserlingk

Medical Director, Surgical Oncologist, VM Medical, Montreal, Canada

Jules Sumkin

Department of Radiology, University of Pittsburgh, USA

Kandace McGuire

VCU School of Medicine, VCU Massey Cancer Center, Richmond, VA, USA

Kevin S. Hughes

Harvard Medical School, Boston, MA, USA

Leonardo Novais Dias

Fellowship in BReast Surgery in European Institute of Oncology and Champalimaud Foundation, Lisbon, Portugal

Lisa A. Newman

University of Michigan, Comprehensive Cancer Center, Michigan, USA

Luiz Henrique Gebrim

Department of Mastology, Federal University of Sao Paulo, Sao Paulo, Brazil

Maurício Magalhães Costa

Americas Medical City Breast Center, Rio de Jeneiro, Brasil

Naim Kadoglou

London North West Healthcare NHS Trust, Ealing Hospital, London, UK

Neslihan Cabioğlu

istanbul University istanbul School of Medicine, istanbul, Turkey

Ronald Johnson

University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, PA, USA

Schlomo Schneebaum

Department of Surgery, Breast Health Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel

Seher Demirer

Ankara University School of Medicine, Ankara, Turkey

Seigo Nakamura

Showa University School of Medicine, Tokyo, Japan

Stanley N C Anyanwu

Nnamdi Azikiwe University, Teaching Hospital, Nnewi, Nigeria

Tadeusz Pienkowski

Medical University of Gdansk, Gdansk, Poland

Aims and Scope

European Journal of Breast Health (Eur J Breast Health) is an international, scientific, open access periodical published by independent, unbiased, and double-blinded peer-review principles. It is the official publication of the Turkish Federation of Breast Diseases Societies, and Senologic International Society is the official supporter of the journal.

European Journal of Breast Health is published quarterly in January, April, July, and October. The publication language of the journal is English.

EJBH aims to be comprehensive, multidisciplinary source and contribute to the literature by publishing manuscripts with the highest scientific level in the fields of research, diagnosis, and treatment of all breast diseases; scientific, biologic, social and psychological considerations, news and technologies concerning the breast, breast care and breast diseases.

The journal publishes; original research articles, case reports, reviews, letters to the editor, brief correspondences, meeting reports, editorial summaries, observations, novel ideas, basic and translational research studies, clinical and epidemiological studies, treatment guidelines, expert opinions, commentaries, clinical trials and outcome studies on breast health, biology and all kinds of breast diseases that are prepared and presented according to the ethical guidelines.

TOPICS within the SCOPE of EJBH concerning the breast health, breast biology and all kinds of breast diseases:

Epidemiology, Risk Factors, Prevention, Early Detection, Diagnosis and Therapy, Psychological Evaluation, Quality of Life, Screening, Imaging Management, Image-guided Procedures, Immunotherapy, molecular Classification, Mechanism-based Therapies, Carcinogenesis, Hereditary Susceptibility, Survivorship, Treatment Toxicities, and Secondary Neoplasms, Biophysics, Mechanisms of Metastasis, Microenvironment, Basic and Translational Research, Integrated Treatment Strategies, Cellular Research and Biomarkers, Stem Cells, Drug Delivery Systems, Clinical Use of Anti-therapeutic Agents, Radiotherapy, Chemotherapy, Surgery, Surgical Procedures and Techniques, Palliative Care, Patient Adherence, Cosmesis, Satisfaction and Health Economic Evaluations.

The target audience of the journal includes specialists and medical professionals in general surgery and breast diseases.

The editorial and publication processes of the journal are shaped in accordance with the guidelines of the International Committee of Medical Journal Editors (ICMJE), World Association of Medical Editors (WAME), Council of Science Editors (CSE), Committee on Publication Ethics (COPE), European Association of Science Editors (EASE), and National Information Standards Organization (NISO). The journal is in conformity with the Principles of Transparency and Best Practice in Scholarly Publishing (doaj.org/bestpractice).

European Journal of Breast Health indexed in PubMed Central, Web of Science-Emerging Sources Citation Index, TUBITAK ULAKBIM TR Index, Embase, EBSCO, CINAHL.

Processing and publication are free of charge with the journal. No fees are requested from the authors at any point throughout the evaluation and publication process. All manuscripts must be submitted via the online submission system, which is available at www.eurjbreasthealth.com. The journal guidelines, technical information, and the required forms are available on the journal's web page.

All expenses of the journal are covered by the Turkish Federation of Breast Diseases Societies. All expenses of the journal are covered by the Turkish Federation of Breast Diseases Societies. Potential advertisers should contact the Editorial Office. Advertisement images are published only upon the Editor-in-Chief's approval.

Statements or opinions expressed in the manuscripts published in the journal reflect the views of the author(s) and not the opinions of the Turkish Federation of Breast Diseases Societies, editors, editorial board, and/or publisher; the editors, editorial board, and publisher disclaim any responsibility or liability for such materials.

All published content is available online, free of charge at www.eurjbreasthealth.com.

Turkish Federation of Breast Diseases Societies holds the international copyright of all the content published in the journal

Editor in Chief: Prof. Vahit ÖZMEN

Address: Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, Çapa, İstanbul

Phone: +90 (212) 534 02 10 Fax: +90 (212) 534 02 10

E-mail: editor@eurjbreasthealth.com Web: www.eurjbreasthealth.com

Publisher: AVES

Address: Büyükdere Cad., 105/9 34394 Mecidiyeköy, Şişli, İstanbul, Turkey

Phone: +90 212 217 17 00 Fax: +90 212 217 22 92 E-mail: info@avesyayincilik.com Web page: www.avesyayincilik.com

Instructions to Authors

European Journal of Breast Health (Eur J Breast Health) is an international, open access, online-only periodical published in accordance with the principles of independent, unbiased, and double-blinded peer-review.

The journal is owned by Turkish Federation of Breast Diseases Societies and it is published quarterly on January, April, July, and October. The publication language of the journal is English. The target audience of the journal includes specialists and medical professionals in general surgery and breast diseases.

The editorial and publication processes of the journal are shaped in accordance with the guidelines of the International Council of Medical Journal Editors (ICMJE), the World Association of Medical Editors (WAME), the Council of Science Editors (CSE), the Committee on Publication Ethics (COPE), the European Association of Science Editors (EASE), and National Information Standards Organization (NISO). The journal conforms to the Principles of Transparency and Best Practice in Scholarly Publishing (doaj.org/bestpractice).

Originality, high scientific quality, and citation potential are the most important criteria for a manuscript to be accepted for publication. Manuscripts submitted for evaluation should not have been previously presented or already published in an electronic or printed medium. The journal should be informed of manuscripts that have been submitted to another journal for evaluation and rejected for publication. The submission of previous reviewer reports will expedite the evaluation process. Manuscripts that have been presented in a meeting should be submitted with detailed information on the organization, including the name, date, and location of the organization.

Manuscripts submitted to the Journal of Breast Health will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in their fields in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions.

An approval of research protocols by the Ethics Committee in accordance with international agreements (World Medical Association Declaration of Helsinki "Ethical Principles for Medical Research Involving Human Subjects," amended in October 2013, www.wma.net) is required for experimental, clinical, and drug studies and for some case reports. If required, ethics committee reports or an equivalent official document will be requested from the authors. For manuscripts concerning experimental research on humans, a statement should be included that shows that written informed consent of patients and volunteers was obtained following a detailed explanation of the procedures that they may undergo. For studies carried out on animals, the measures taken to prevent pain and suffering of the animals should be stated clearly. Information on patient consent, the name of the ethics committee, and the ethics committee approval number should also be stated in the Materials and Methods section of the manuscript. It is the authors' responsibility to carefully protect the patients' anonymity. For photographs that may reveal the identity of the patients, signed releases of the patient or of their legal representative should be enclosed.

All submissions are screened by a similarity detection software (iThenticate by CrossCheck).

In the event of alleged or suspected research misconduct, e.g., plagiarism, citation manipulation, and data falsification/fabrication, the Editorial Board will follow and act in accordance with COPE guidelines.

Each individual listed as an author should fulfill the authorship criteria recommended by the International Committee of Medical Journal Editors

(ICMJE - www.icmje.org). The ICMJE recommends that authorship be based on the following 4 criteria:

1 Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

- 2 Drafting the work or revising it critically for important intellectual content: AND
- 3 Final approval of the version to be published; AND
- 4 Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

In addition to being accountable for the parts of the work he/she has done, an author should be able to identify which co-authors are responsible for specific other parts of the work. In addition, authors should have confidence in the integrity of the contributions of their co-authors.

All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors. Those who do not meet all four criteria should be acknowledged in the title page of the manuscript.

Journal of Breast Health requires corresponding authors to submit a signed and scanned version of the authorship contribution form (available for download through www.eurjbreasthealth.com) during the initial submission process in order to act appropriately on authorship rights and to prevent ghost or honorary authorship. If the editorial board suspects a case of "gift authorship," the submission will be rejected without further review. As part of the submission of the manuscript, the corresponding author should also send a short statement declaring that he/she accepts to undertake all the responsibility for authorship during the submission and review stages of the manuscript.

Journal of Breast Health requires and encourages the authors and the individuals involved in the evaluation process of submitted manuscripts to disclose any existing or potential conflicts of interests, including financial, consultant, and institutional, that might lead to potential bias or a conflict of interest. Any financial grants or other support received for a submitted study from individuals or institutions should be disclosed to the Editorial Board. To disclose a potential conflict of interest, the ICMJE Potential Conflict of Interest Disclosure Form should be filled in and submitted by all contributing authors. Cases of a potential conflict of interest of the editors, authors, or reviewers are resolved by the journal's Editorial Board within the scope of COPE and ICMJE guidelines.

The Editorial Board of the journal handles all appeal and complaint cases within the scope of COPE guidelines. In such cases, authors should get in direct contact with the editorial office regarding their appeals and complaints. When needed, an ombudsperson may be assigned to resolve cases that cannot be resolved internally. The Editor in Chief is the final authority in the decision-making process for all appeals and complaints.

When submitting a manuscript to the Journal of Breast Health, authors accept to assign the copyright of their manuscript to Turkish Federation of Breast Diseases Societies. If rejected for publication, the copyright of the manuscript will be assigned back to the authors. European Journal of Breast Health requires each submission to be accompanied by a Copyright Transfer Form (available for download at www.eurjbreasthealth.com). When using previously published content, including figures, tables, or any other material in both print and electronic formats, authors must obtain permission from the copyright holder. Legal, financial and criminal liabilities in this regard belong to the author(s).

Statements or opinions expressed in the manuscripts published in the Journal of Breast Health reflect the views of the author(s) and not the opinions of the editors, the editorial board, or the publisher; the editors, the editorial board, and the publisher disclaim any responsibility or liability for such materials. The final responsibility in regard to the published content rests with the authors.

MANUSCRIPT PREPARATION

The manuscripts should be prepared in accordance with ICMJE-Recommen-

Instructions to Authors

dations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (updated in December 2018 - http://www.icmje.org/icmje-recommendations.pdf). Authors are required to prepare manuscripts in accordance with the CONSORT guidelines for randomized research studies, STROBE guidelines for observational original research studies, STARD guidelines for studies on diagnostic accuracy, PRISMA guidelines for systematic reviews and meta-analysis, ARRIVE guidelines for experimental animal studies, and TREND guidelines for non-randomized public behavior.

Manuscripts can only be submitted through the journal's online manuscript submission and evaluation system, available at www.eurjbreasthealth.com. Manuscripts submitted via any other medium will not be evaluated.

Manuscripts submitted to the journal will first go through a technical evaluation process where the editorial office staff will ensure that the manuscript has been prepared and submitted in accordance with the journal's guidelines. Submissions that do not conform to the journal's guidelines will be returned to the submitting author with technical correction requests.

Authors are required to submit the following:

- Copyright Transfer Form,
- · Author Contributions Form, and
- ICMJE Potential Conflict of Interest Disclosure Form (should be filled in by all contributing authors) during the initial submission. These forms are available for download at www.eurjbreasthealth.com.

Preparation of the Manuscript

Title page: A separate title page should be submitted with all submissions and this page should include:

- The full title of the manuscript as well as a short title (running head) of no more than 50 characters,
- Name(s), affiliations, and highest academic degree(s) of the author(s),
- Grant information and detailed information on the other sources of support,
- Name, address, telephone (including the mobile phone number) and fax numbers, and email address of the corresponding author,
- Acknowledgment of the individuals who contributed to the preparation
 of the manuscript but who do not fulfill the authorship criteria.

Abstract: An English abstract should be submitted with all submissions except for Letters to the Editor. Submitting a Turkish abstract is not compulsory for international authors. The abstract of Original Articles should be structured with subheadings (Objective, Materials and Methods, Results, and Conclusion). Please check Table 1 below for word count specifications.

Keywords: Each submission must be accompanied by a minimum of three to a maximum of six keywords for subject indexing at the end of the abstract. The keywords should be listed in full without abbreviations. The keywords should be selected from the National Library of Medicine, Medical Subject Headings database (https://www.nlm.nih.gov/mesh/MBrowser.html).

Manuscript Types

Original Articles: This is the most important type of article since it provides new information based on original research. The main text of original articles should be structured with Introduction, Material and Materials, Results, Discussion and Conclusion subheadings. Please check Table 1 for the limitations for Original Articles.

Statistical analysis to support conclusions is usually necessary. Statistical analyses must be conducted in accordance with international statistical reporting standards (Altman DG, Gore SM, Gardner MJ, Pocock SJ. Statistical guidelines for contributors to medical journals. Br Med J 1983: 7; 1489-93). Information on statistical analyses should be provided with a separate subheading under the Materials and Methods section and the statistical software that was used during the process must be specified.

Units should be prepared in accordance with the International System of Units (SI).

Editorial Comments: Editorial comments aim to provide a brief critical commentary by reviewers with expertise or with high reputation in the topic of the research article published in the journal. Authors are selected and invited by the journal to provide such comments. Abstract, Keywords, and Tables, Figures, Images, and other media are not included.

Review Articles: Reviews prepared by authors who have extensive knowledge on a particular field and whose scientific background has been translated into a high volume of publications with a high citation potential are welcomed. These authors may even be invited by the journal. Reviews should describe, discuss, and evaluate the current level of knowledge of a topic in clinical practice and should guide future studies. The main text should contain Introduction, Clinical and Research Consequences, and Conclusion sections. Please check Table 1 for the limitations for Review Articles.

Case Reports: There is limited space for case reports in the journal and reports on rare cases or conditions that constitute challenges in diagnosis and treatment, those offering new therapies or revealing knowledge not included in the literature, and interesting and educative case reports are accepted for publication. The text should include Introduction, Case Presentation, Discussion, and Conclusion subheadings. Please check Table 1 for the limitations for Case Reports.

Letters to the Editor: This type of manuscript discusses important parts, overlooked aspects, or lacking parts of a previously published article. Articles on subjects within the scope of the journal that might attract the readers' attention, particularly educative cases, may also be submitted in the form of a "Letter to the Editor." Readers can also present their comments on the published manuscripts in the form of a "Letter to the Editor." Abstract, Keywords, and Tables, Figures, Images, and other media should not be included. The text should be unstructured. The manuscript that is being commented on must be properly cited within this manuscript.

Images in Clinical Practices: Our journal accepts original high quality images related to the cases that we come across during clinical practices, that cite the importance or infrequency of the topic, make the visual quality stand out and present important information that should be shared in academic platforms. Titles of the images should not exceed 10 words. Images can be signed by no more than 3 authors. Figure legends are limited to 200 words and the number of figures is limited to 3. Video submissions will not be considered.

Current Opinion: Current Opinion provides readers with a commentary of either recently published articles in the European Journal of Breast Health or some other hot topic selected articles. Authors are selected and invited by the journal for such commentaries. This type of article contains three main sections

Table 1. Limitations for each manuscript type

Type of manuscript	Word limit	Abstract word limit	Reference limit	Table limit	Figure limit	
Original Article	3500	250 (Structured)	30	6	7 or total of 15 images	
Review Article	5000	250	50	6	10 or total of 20 images	
Case Report	1000	200	15	No tables	10 or total of 20 images	
Letter to the Editor	500	No abstract	5	No tables	No media	
Current Opinion	300	No abstract	5	No tables	No media	
BI-RADS: Breast imaging, report and data systems						

Instructions to Authors

titled as Background, Present Study, and Implications. Authors are expected to describe the background of the subject/study briefly, critically discuss the present research, and provide insights for future studies.

Tables

Tables should be included in the main document, presented after the reference list, and they should be numbered consecutively in the order they are referred to within the main text. A descriptive title must be placed above the tables. Abbreviations used in the tables should be defined below the tables by footnotes (even if they are defined within the main text). Tables should be created using the "insert table" command of the word processing software and they should be arranged clearly to provide easy reading. Data presented in the tables should not be a repetition of the data presented within the main text but should be supporting the main text.

Figures and Figure Legends

Figures, graphics, and photographs should be submitted as separate files (in TIFF or JPEG format) through the submission system. The files should not be embedded in a Word document or the main document. When there are figure subunits, the subunits should not be merged to form a single image. Each subunit should be submitted separately through the submission system. Images should not be labeled (a, b, c, etc.) to indicate figure subunits. Thick and thin arrows, arrowheads, stars, asterisks, and similar marks can be used on the images to support figure legends. Like the rest of the submission, the figures too should be blind. Any information within the images that may indicate an individual or institution should be blinded. The minimum resolution of each submitted figure should be 300 DPI. To prevent delays in the evaluation process, all submitted figures should be clear in resolution and large in size (minimum dimensions: 100 × 100 mm). Figure legends should be listed at the end of the main document.

All acronyms and abbreviations used in the manuscript should be defined at first use, both in the abstract and in the main text. The abbreviation should be provided in parentheses following the definition.

When a drug, product, hardware, or software program is mentioned within the main text, product information, including the name of the product, the producer of the product, and city and the country of the company (including the state if in USA), should be provided in parentheses in the following format: "Discovery St PET/CT scanner (General Electric, Milwaukee, WI, USA)"

All references, tables, and figures should be referred to within the main text, and they should be numbered consecutively in the order they are referred to within the main text.

Limitations, drawbacks, and the shortcomings of original articles should be mentioned in the Discussion section before the conclusion paragraph.

References

While citing publications, preference should be given to the latest, most upto-date publications. If an ahead-of-print publication is cited, the DOI number should be provided. Authors are responsible for the accuracy of references. Journal titles should be abbreviated in accordance with the journal abbreviations in Index Medicus/ MEDLINE/PubMed. When there are six or fewer authors, all authors should be listed. If there are seven or more authors, the first six authors should be listed followed by "et al." In the main text of the manuscript, references should be cited using Arabic numbers in parentheses. References published in PubMed should have a PMID: xxxxxx at the end of it, which should be stated in paranthesis. The reference styles for different types of publications are presented in the following examples.

Journal Article: Little FB, Koufman JA, Kohut RI, Marshall RB. Effect of gastric acid on the pathogenesis of subglottic stenosis. Ann Otol Rhinol Laryngol 1985; 94:516-519. (PMID: 4051410)

Book Section: Suh KN, Keystone JS. Malaria and babesiosis. Gorbach SL, Barlett JG, Blacklow NR, editors. Infectious Diseases. Philadelphia: Lippincott Williams; 2004.p.2290-308.

Books with a Single Author: Sweetman SC. Martindale the Complete Drug Reference. 34th ed. London: Pharmaceutical Press; 2005.

Editor(s) as Author: Huizing EH, de Groot JAM, editors. Functional reconstructive nasal surgery. Stuttgart-New York: Thieme; 2003.

Conference Proceedings: Bengisson S. Sothemin BG. Enforcement of data protection, privacy and security in medical informatics. In: Lun KC, Degoulet P, Piemme TE, Rienhoff O, editors. MEDINFO 92. Proceedings of the 7th World Congress on Medical Informatics; 1992 Sept 6-10; Geneva, Switzerland. Amsterdam: North-Holland; 1992. pp.1561-5.

Scientific or Technical Report: Cusick M, Chew EY, Hoogwerf B, Agrón E, Wu L, Lindley A, et al. Early Treatment Diabetic Retinopathy Study Research Group. Risk factors for renal replacement therapy in the Early Treatment Diabetic Retinopathy Study (ETDRS), Early Treatment Diabetic Retinopathy Study Kidney Int: 2004. Report No: 26.

Thesis: Yılmaz B. Ankara Üniversitesindeki Öğrencilerin Beslenme Durumları, Fiziksel Aktiviteleri ve Beden Kitle İndeksleri Kan Lipidleri Arasındaki İlişkiler. H.Ü. Sağlık Bilimleri Enstitüsü, Doktora Tezi. 2007.

Manuscripts Accepted for Publication, Not Published Yet: Slots J. The microflora of black stain on human primary teeth. Scand J Dent Res. 1974.

Epub Ahead of Print Articles: Cai L, Yeh BM, Westphalen AC, Roberts JP, Wang ZJ. Adult living donor liver imaging. Diagn Interv Radiol. 2016 Feb 24. doi: 10.5152/dir.2016.15323. [Epub ahead of print].

Manuscripts Published in Electronic Format: Morse SS. Factors in the emergence of infectious diseases. Emerg Infect Dis (serial online) 1995 Jan-Mar (cited 1996 June 5): 1(1): (24 screens). Available from: URL: http://www.cdc.gov/ncidodlElD/cid.htm.

REVISIONS

When submitting a revised version of a paper, the author must submit a detailed "Response to the reviewers" that states point by point how each issue raised by the reviewers has been covered and where it can be found (each reviewer's comment, followed by the author's reply and line numbers where the changes have been made) as well as an annotated copy of the main document. Revised manuscripts must be submitted within 30 days from the date of the decision letter. If the revised version of the manuscript is not submitted within the allocated time, the revision option may be canceled. If the submitting author(s) believe that additional time is required, they should request this extension before the initial 30-day period is over.

Accepted manuscripts are copy-edited for grammar, punctuation, and format. Once the publication process of a manuscript is completed, it is published online on the journal's webpage as an ahead-of-print publication before it is included in its scheduled issue. A PDF proof of the accepted manuscript is sent to the corresponding author and their publication approval is requested within 2 days of their receipt of the proof.

Editor in Chief: Prof. Dr. Vahit ÖZMEN

Web: www.eurjbreasthealth.com

Address: Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, Çapa, İstanbul Phone: +90 (212) 534 02 10 Fax: +90 (212) 534 02 10 E-mail: editor@eurjbreasthealth.com

Publisher: AVES

Address: Büyükdere Cad. 105/9 34394 Mecidiyeköy, Şişli, İstanbul, Turkey Phone: +90 212 217 17 00 Fax: +90 212 217 22 92 E-mail: info@avesyayincilik.com www.avesyayincilik.com

Contents

	REVIEW
137	Clinical Evaluation of Breast in Childhood Selda Karaayvaz
	ORIGINAL ARTICLES
141	Breast Cancer in Turkey; An Analysis of 20.000 Patients with Breast Cancer Vahit Özmen, Tolga Özmen, Volkan Doğru
147	Imaging Findings and Clinicopathological Correlation of Breast Cancer in Women under 40 Years Old Gamze Durhan, Aynur Azizova, Ömer Önder, Kemal Kösemehmetoğlu, Jale Karakaya, Meltem Gülsün Akpınar, Figen Demirkazık, Ayşegül Üner
153	3D Automated Breast Ultrasound System: Comparison of Interpretation Time of Senior Versus Junior Radiologist Aydan Arslan, Gökhan Ertaş, Erkin Arıbal
158	The Effect of Mini-Latissimus Dorsi Flap (MLDF) Reconstruction on Shoulder Function in Breast Cancer Patients Tomris Duymaz, Zeynep Erdoğan İyigün, Ahmet Serkan İlgün, Çetin Ordu, Muhammed Üçüncü, Gül Alço, Alper Öztürk, Filiz Elbüken, Fatma Aktepe, Vahit Özmen
163	The Oncotype Dx Assay in ER-Positive, HER2-Negative Breast Cancer Patients: A Real Life Experience from a Single Cancer Center Stephane Thibodeau, Ioannis A. Voutsadakis
171	Our 20-Year Institutional Experience with Surgical Approach for Breast Hamartomas Zeliha Türkyılmaz, Tahacan Aydın, Ravza Yılmaz, Semen Önder, Enver Özkurt, Mustafa Tükenmez, Mahmut Müslümanoğlu, Gülden Acunaş, Abdullah İğci, Vahit Özmen, Ahmet Dinçağ, Neslihan Cabioğlu
176	Can Radiologist and Pathologist Reach The Truth Together in The Diagnosis of Benign Fibroepithelial Lesions? Gamze Durhan, Ömer Önder, Aynur Azizova, Jale Karakaya, Kemal Kösemehmetoğlu, Meltem Gülsün Akpınar, Figen Demirkazık
183	Cost Effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in a Middle-Income Country, Turkey: Results of a Prospective Multicenter Study Vahit Özmen, Burcu Çakar, Erhan Gökmen, Mustafa Özdoğan, Nilufer Güler, Cihan Uras, Engin Ok, Orhan Demircan, Abdurrahman Işıkdoğan, Pınar Saip
	CASE REPORTS
191	Intramammary Nodal Metastasis from Ovarian Cancer: A Case Report Omar Hamdy, Farida A Shokeir, Gehad A Saleh, Marwa MA Zaki
196	Primary Benign Phyllodes Tumor of The Vulva: Case Report and Review of Literature Asuman Kilitci, Okan Arioz
200	Unexpected Finding on Mammography and MRI due to Accumulation of Iron Oxide Particles Used for Sentinel Lymph Node Detection Gözde Arslan, Cem Yılmaz, Levent Çelik, Rahmi Çubuk, Nuri Tasalı
	LETTERS TO THE EDITOR
203	Treatment of Capsular Contracture After Radiotherapy in Breast Reconstruction Yasemin Benderli Cihan, Halit Baykan, Alaettin Arslan
20F	Lapatinib? or Radiotherapy? In Cranial Metastasis of Breast Cancer

Yasemin Benderli Cihan

Clinical Evaluation of Breast in Childhood

Selda Karaayvaz 🗈

Division of Social Pediatrics, Department of Pediatrics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey

ABSTRACT

Childhood breast masses are mostly benign conditions starting from the newborn period continuing on to adolescence yet can cause high anxiety in the child and the family as well. As a complaint or physical finding, usually palpable mass, pain or discharge from the nipple is apparent in patients. All the clinicians interested in pediatric field should have full knowledge of immature and developing breasts so to proper diagnose and avoid overtreatment with unnecessary diagnostic or surgical procedures. Though malignancy or life-threatening disease has a very low probability during childhood, all child patients should be evaluated and followed up carefully. Especially training and then encouraging young people to periodically start self-assessment of the breasts after their 19th birthday while warning the ones who have had therapeutic chest radiation previously to begin self-assessment 8 years after the procedure or at 25 years of age whichever comes last, will be an appropriate intervention.

Keywords: Breast, breast disease, childhood, newborn, children, adolescent

Cite this article as: Karaayvaz S. Clinical Evaluation of Breast in Childhood. Eur J Breast Health 2019; 15(3): 137-140.

Introduction

Development of breast begins during 5th week of gestation and completes the growth under estrogen effect. Pubertal breast development (thelarche) physiologically occurs at 8-13 years in girls under increased estrogen effect which is triggered by the hypothalamus and pituitary gland on the ovaries (1-3). In every stage of childhood, breast examination should be an indispensable part of physical examination either in girls or boys and should be included in the annual examination of all children and adolescents.

The American College of Obstetricians and Gynecologists recommends that all the adolescents should be educated and encouraged to carry out self-assessment of their breasts after their 19th birthday and for the patients who have had therapeutic chest radiation previously, to start 8 years after the procedure or at 25 years of age which comes last (4).

Neonatal Period

In some newborns, breasts could be observed overtly or palpably occurring under maternal estrogen effect. The nipple is seen shortly after birth in normal conditions, but it is usually depressed. Sometimes nipple discharge which mimics milk (witch's milk) can be observed in both sexes due to increasing prolactin levels of lactation (1, 2). The condition is diagnosed clinically and frequently resolves spontaneously. Although mastitis and breast abscess are rare in newborns, some traditional approaches (some creams, mixtures or to rub down) can exacerbate the condition and in these cases the use of antibiotics and a close follow up would be necessary (1, 2).

In Children

Lipomastia

Breast enlargement may be seen due to increased adipose tissue in overweight/obese children in both sexes (Lipomastia) (3). It is a clinical entity and differential diagnosis is made mostly by physical examination. There is no glandular tissue under the areola and the view is overt when the patient is sitting. Sometimes it is difficult to make differential diagnosis with gynecomastia where an ultrasonography would be needed (5).

Received: 10.02.2019

Accepted: 18.03.2019

Hemangiomas/lymphangiomas

In some cases, breast enlargement in prepubertal children may also be caused by hemangiomas or lymphangiomas (1). Although the diagnosis is clinically easily made in some cases there need to be advanced approaches such as ultrasonography and/or magnetic resonance imaging.

Amastia/hypomastia

Congenital forms may be isolated and genetical however some of the cases are associated with clinical entities such as ectodermal dysplasia, Poland syndrome, Crohn disease, some endocrinological disease's (1, 2, 6). Amastia/hypomastia are very rare conditions and mostly placed unilaterally. If there exists any extraordinary physical findings or complaints from the patient next to breast diversion, further investigation is needed.

Acquired forms are seen in traumas, radiotherapy, burns, some surgical procedures, and inappropriate biopsies of the breast bud. Treatment is designed according to underlying condition (1).

Polymastia/polythelia

Supernumerary tissue or accessory nipples are rare conditions and associated with cardiovascular or urinary tract anomaly. They usually exist on the chest, upper abdomen or in the inferior part of normal breast tissue (1, 2, 6). Surgery might be needed to solve cosmetic or functional problems (7).

Breast asymmetry and hypoplasia

In healthy people some breast asymmetry is normal. If asymmetry or hypoplasia is excessively visible; structural variations, hormonal diseases, chest diseases or procedures, tuberous breast anomaly should be taken into consideration (1, 2). If necessary reconstructive surgery should be delayed until the termination of puberty (8).

Juvenile or virginal hypertrophy

It is an aggregated rare form of normal breast hypertrophy mostly seen in adolescent girls, causing some physical problems such as posture disturbances, back pain or psychologic distress which are main indications for corrective surgery. As a reason, excessive end organ sensitivity to gonadal hormones is under discussion (1, 6). Using supportive brassieres, medical approach or corrective surgery are the treatment steps (1).

Infections

Mastitis may occur in newborns and adolescents. Irritation, trauma, foreign body, or anatomical defects as ductal ectasia or cystic lesions may cause infections. If fever, pain and other accompanying inflammatory findings exist, the condition is then diagnosed clinically. Ultrasonography is needed for further evaluation in doubtful cases. Antibiotics targeting staphylococcus aureus and gram-negative bacilli are initially recommended but if abscesses occur, drainage should be practiced (1, 9).

Nipple discharge

Nipple discharge is a rare condition in children. Although milky, sticky and thick discharge is mostly benign, purulent, serous or bloody discharge should be evaluated (1, 6, 8, 10). Galactorrhea might be a sign of prolactinoma, hypothyroidism, drug use and pregnancy should be kept in mind in adolescents as well. It is not infrequent in adolescent athletes to observe bloody discharge due to chronical stimulation of the nipple but cytology is essential in these cases to exclude the possibility of intraductal papilloma (1, 6, 10).

Mastalgia

In adolescents, premenstrual pains, benign growth pains or pains due to heavy exercise are observed frequently.

The use of soft brassieres, keeping warm, limitation of heavy exercise, drinking caffeine or acidic beverages and smoking are frequently workable precautions. If the pain is severe, nonsteroidal anti-inflammatory drugs or topicals are the first line drugs, and in some cases oral contraceptives are useful (1).

Breast Masses

Fibrocystic changes

Cysts are the most common masses in the pediatric population. At least 50 percent of women experience fibrocystic changes in their whole reproductive period (6, 10). Easily palpated fibrotic tissue usually exists in the upper outer quadrants of the breast usually. The size and the degree of pain vary parallel to menstrual cycle changes while the etiology of the condition is related to the imbalance between estrogen and progesterone hormones (1, 6). Mostly history and physical examination is enough for diagnosis. Breast ultrasonography is rarely required. Aspiration is performed if the gravity persists or increases; cytology is needed for bloody content. To relieve symptoms, nonsteroidal anti-inflammatory drugs especially ibuprofen is recommended in adolescents. Limiting caffeine intake can be helpful and oral contraceptives could be used in special circumstances (1, 2)

Fibroadenomas

These are most extreme breast masses in adolescents, frequently occurring in the upper outer part of breasts as an exaggerated response to estrogen stimulation. The condition accounts for 30-50 percent and 44-94 percent of adolescent breast masses in medical and surgical series respectively and accounts 50 percent of all breast biopsies (6, 11). Fibroadenomas are easily diagnosed by palpation (approximately 2-3 cm in size (ranging 1-10 cm), consistency, texture, location and tenderness as they are well-circumscribed lesions. An ultrasonography (US) examination is needed in all cases (1, 6, 8, 10-13). Mammography is not indicated in adolescents, as the intense structure of breasts limit imaging and the radiation effect on the growing tissue (8, 12, 13).

Although the course is benign, nipple discharge, trauma to breasts, family history of breast diseases/malignancy and previous history of chest radiation should be inquired in detail in every case.

Periodical follow up with physical examination and US is usually enough, but 4% of the lesions grow and need core needle aspiration (1). Surgical excision is demonstrated if the mass persists to adulthood or reaches 5 cm which can lead to risk of developing giant fibroadenoma or cystosarcoma phyllodes (1, 2, 13). However, surgery should not be performed before confirmation of the lesion by breast core needle biopsy.

Breast trauma

Trauma to the breast may be observed through childhood (e.g. traditional practices to newborns' physiologic breast enlargement, bumps to breasts, heavy exercise, seatbelt injury) resulting in fat necrosis that resemble breast mass. Differential diagnosis is frequently made by history and physical examination, but as fat necrosis mimics breast malignancy, further evaluation with ultrasonography for the typical image is needed (10, 14-16). In some of the cases which the presentation is not definitive, biopsy is the choice.

Mammary duct ectasia

The condition is the stretching of subareolar ducts with fibrosis and inflammation with sticky, multicolored fluid that appears as a dark colored mass under the nipple (blue breast) being predisposed to infection (mastitis or breast abscess). Although it is a benign course and resolves spontaneously, sometimes a residual subareolar nodule may be left (1, 2).

Cysts of Montgomery

Montgomery glands/tubercles or Morgagni tubercles are rooted, small papillary processes in periareolar region and probably play a role in lactation. Obstruction of the glands may cause inflammation, asymptomatic cyst or brownish, clear discharge (1, 2). Diagnosis is made clinically and usually resolves spontaneously. In some difficult cases ultrasonographic confirmation is needed.

Malignant masses

Primary breast cancer is very rare in the pediatric population (1, 6, 8, 16, 17). According to the data taken from Surveillance Epidemiology and End Results (SEER) of USA, from the 2011 to 2015 list, in female adolescents aged 15-19 years, invasive breast cancer incidence is declared as 0.1/100,000 (5). Juvenile secretory carcinoma made up over 80 percent of the cases, followed by intraductal carcinoma. Rhabdomyosarcoma and lymphoma also may occur as a primary tumor of the breast. Cystosarcoma phyllodes is a very rare condition having the potential of rapid growth and mimicking giant fibroadenomas (1, 12, 13). Juvenile papillomatosis has the potential of breast cancer in 15% of cases and should be treated surgically (1).

Primary finding of breast cancer in adolescents is a hard and irregular mass sometimes being fixed on underlying tissue. Also, skin or nipple involvement, retraction, discharge or skin edema (peau d'orange) and lymphadenopathy in neighbourhood could be observed (1, 17).

Risk factors such as familial history, history of previous individual cancer and exposure of the chest to radiation therapy or personal habits such as; alcohol consumption, limited physical activity or smoking, should be kept in mind.

The diagnosis is made by US with a proceeding biopsy from the mass. Accompanying lymph nodes and distant organ/system metastasis should be evaluated according to the stage of the disease (1, 17).

Metastatic cancer

Metastatic cancer to the breast are usually found due to existing states of rhabdomyosarcoma, Hodgkin and non-Hodgkin lymphoma, hepatocellular carcinoma and neuroblastomas (1,18).

Secondary cancer

Relapsing acute lymphoblastic leukemias, carcinomas of breast or previous chest radiation from another disease such as Hodgkin lymphoma are the causes of secondary cancers (1, 19, 20).

Management of breast masses in children;

- 1. Taking careful history; duration of the complaint, primary size or any increase in the mass, trauma, previous individual or familial breast disease or malignancy, previous chest radiation therapy, use of any drugs, pregnancy history or menstrual cycle regularity in adolescents.
- 2. Physical examination; location, size, being cystic/solid lesion, mobile/fixed, tender, inflammation criterion, skin changes, nipple discharge or attending lymphadenopathy or organomegaly.

- 3. Imaging; for persistent, atypical or extraordinary localized masses ultrasonography is preferred as the accuracy of the device in experienced hands when differentiating solid from cystic lesions is 96-100%. Mammography is not used in childhood breast diseases routinely, but for the girls who had received chest radiation for any kind of cancer are recommended to start mammography screening at 25 years of age or 8 years after therapy whichever comes last. Breast MRI can be added to the screening in these cases.
- 4. Surgical procedures; persistent cystic lesions need aspiration (bloody material in the aspirate needs cytologic evaluation). In the case of cystic lesions which do not resolve after aspiration, suspicious masses (unusual localization, fixed next to tissue, hard character etc.) or which, lymphadenopathy and/or hepatosplenomegaly accompany, surgical resection is demonstrated.
- 5. Therapy depends and varies upon the type of breast disease.

Conclusion

Breast masses during childhood are mostly benign, transient conditions. Physiologic hormonal changes, benign growth, cysts, some congenital anomaly/variants or syndromes, traumas and rarely malignancies may cause breast problems. Every physician interested in child health should implement checking of the breasts as a part of a routine physical examination and should have a command of breast physiology, development, variant conditions as well as pathological courses.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The author has no conflicts of interest to declare.

Financial Disclosure: The author declared that this study has received no financial support.

References

- Felsch KN, Merritt DF. Breast concerns. Kliegmen RM., Stanton BF, Schor NF, St Geme III JW, editors. Nelson Textbook of Pediatrics 20th ed. Philadelphia: Lippincott Williams; 2016. p. 2614-2618.
- Greydanus DE, Matytsina L, Gains M. Breast Disorders in Children and Adolescents. Prim Care 2006; 33; 455-502. (PMID: 16713771) [CrossRef]
- Kaplowitz P, Bloch C. The section on endocrinology. Evaluation and Referral of Children with Signs of Early Puberty. Pediatrics 2016; 137: e20153732. (PMID: 26668298) [CrossRef]
- Noone AM, Howlader N, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD.
- Yazici M, Sahin EM, Bolu ED, Gok E, Taslipinar A, Tapan ES, Torun ED, Uckaya EG, Kutlu EM. Evaluation of breast enlargement in young males and factors associated with gynecomastia and pseudogynecomastia. Ir J Med Sci 2010; 179: 575-583 (PMID: 19495841) [CrossRef]
- Templeman C, Hertweck SP. Breast disorders in the pediatric and adolescent patient. Obstet Gynecol Clin North Am 2000; 27: 19-34. (PMID: 10693180) [CrossRef]
- Singh K. Cosmetic surgery in teenagers: to do or not to do. J Cutan Aesthet Surg 2015; 8: 57-59. (PMID: 25949026) [CrossRef]
- Arca MJ, Caniano DA. Breast disorders in the adolescent patient. Adolesc Med Clin 2004; 15: 473-485. (PMID: 15625988) [CrossRef]
- Faden H. Mastitis in children from birth to 17 years. Pediatr Infect Dis J 2005; 24: 1113. (PMID: 16371879) [CrossRef]

- Warren R, Degnim AC. Uncommon benign breast abnormalities in adolescents. Semin Plast Surg 2013; 27: 26-28. (PMID: 24872736) [CrossRef]
- Greenberg R, Skornick Y, Kaplan O. Management of breast fibroadenomas.
 J Gen Intern Med 1998; 13: 640-645. (PMID: 9754521) [CrossRef]
- Jakubowska A, Grajewska-Ferens M, Brzewski M. Breast cysts in adolescents- diagnostics, monitoring, treatment. Pol J Radiol 2011; 76: 20-24. (PMID: 22802812)
- Lee M, Soltanian HT. Breast fibroadenomas in adolescents: current perspectives. Adolesc Health Med Ther 2015; 6: 159-163. (PMID: 26366109) [CrossRef]
- Sidra JT, Adrada BE, Rauch GM, Yang WT. A pictorial review: multi-modality imaging of benign and suspicious features of fat necrosis in the breast. Br J Radiol 2018; 91: 20180213. (PMID: 29987981). [CrossRef]
- Greydanus DE, Stockburger S, Omar HA, Dodich CB. The Female and Male Adolescent Breast. Available from: URL: https://uknowledge.uky. edu/cgi/viewcontent.cgi?referer=https://www.google.com/&thttpsredir =1&article=1128&context=pediatrics_facpub. (Accessed 04.02.2019) [CrossRef]

- Lee EJ, Chang YW, Oh JH, Hwang J, Hong SS, Kim H. Breast Lesions in Children and Adolescents: Diagnosis and Management. Korean J Radiol 2018; 19: 978-991. (PMID: 30174488) [CrossRef]
- Richards MK, Goldin AB, Beierle EA, Doski JJ, Goldfarb M, Langer M, Nuchtern JG, Vasudevan S, Gow KW, Javid SH. Breast Malignancies in Children: Presentation, Management, and Survival. Ann Surg Oncol 2017; 24: 1482-1491. (PMID: 28058544) [CrossRef]
- Howarth CB, Caces JN, Pratt CB. Breast metastases in children with rhabdomyosarcoma. Cancer 1980; 46: 2520-2524. (PMID: 7438025) [CrossRef]
- Bhatia S, Robison LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, Meadows AT. Breast cancer and other second neoplasms after child-hood Hodgkin's disease. N Engl J Med 1996; 334: 745-751. (PMID: 8592547) [CrossRef]
- Raj KA, Marks LB, Prosnitz RG. Late effects of breast radiotherapy in young women Breast Dis 2005-2006; 23: 53-65. (PMID: 16823167) [CrossRef]

Breast Cancer in Turkey; An Analysis of 20.000 Patients with Breast Cancer

Vahit Özmen¹, Tolga Özmen², Volkan Doğru³

ABSTRACT

Objective: Breast cancer is the most common type of cancer and the leading cause of cancer-related deaths in women in Turkey. This study presents the characteristics of patients registered in National Breast Cancer Registry Program of Turkish Federation of Breast Diseases Societies.

Materials and Methods: The registry contains 242 variables under 10 categories and 699 questions. Patients were recorded (online and offline) from nationwide breast centers around Turkey.

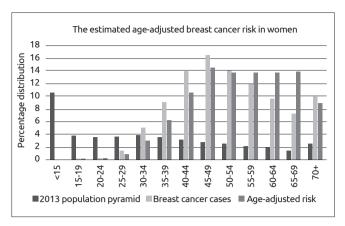
Results: Twenty-thousand patients were registered between May 2005 and April 2017 at 36 centers. After data cleaning, 19,503 women were included in the study. The median age at diagnosis was 51 [14-97]; 17.2% were younger than 40 and 37.2% were premenopausal; 13.6% were nulliparous. Breast conserving surgery rate was 39.3%. Histopathology was invasive ductal cancer in 77%. Majority of patients had stage II cancer (48.3%). Estrogen, progesterone and HER-2 receptor positivity rates in invasive breast cancer were 72.5%, 62.5% and 21.8%, respectively. The mean tumor diameter was 2.5±1.7 cm. During the mean 51.6 months of follow-up, the local/regional and systemic recurrence rates were 3.7% and 5.2%, respectively; five and 10-year overall survival rates were 86% and 76%.

Conclusion: Despite increasing number of screening centers and free-of-charge mammography (ages 40 to 69) and mobile screening systems in recent years, a significant portion of patients were diagnosed at advanced stage due to lack of breast cancer awareness. In contrast with the study published 5 years ago, there was a decrease in the rate of pre-menopausal women and an increase in the breast conserving surgery.

Keywords: Breast cancer, demography, reproductive functions, pathology, survival, Turkey

Cite this article as: Özmen V, Özmen T, Doğru V. Breast Cancer in Turkey; An Analysis of 20.000 Patients with Breast Cancer. Eur J Breast Health 2019; 15(3): 141-146.

Introduction


Worldwide, there will be about 2.1 million newly diagnosed female breast cancer (BC) cases in 2018, accounting for almost 1 in 4 cancer cases among women (1). The disease is the most frequently diagnosed cancer in the vast majority of the countries (154 of 185) and is also the leading cause of cancer death in over 100 countries. Its incidence and mortality rates have been increasing mostly in developing countries including Turkey (2). Breast cancer incidence has increased almost two times in the last two years (24/100,000 in 1994 and 43.8/100,000 in 2015) in Turkey (3, 4). According to the Cancer Report 2015 data published by the Cancer Registry Unit of the Cancer Control Department, 17,183 women diagnosed with breast cancer in 2015 (4).

Maintaining an accurate and complete cancer registry program is one of the most important factors to implement national cancer control programs and assess the outcomes of screening, diagnosis and treatment. Unless accurate data are obtained and statistically assessed, prioritization cannot be achieved and sound decisions cannot be taken in the development of national health policies, national cancer strategic plans and utilization of limited resources. The Turkish Federation of Breast Diseases Societies (TFBDS) is the largest and single association of national breast societies and implementing an active specific registry in this sense; namely, the National Breast Cancer Registry Program (NBCRP). The program has been collecting data since 2005 from 36 centers scattered throughout the country. The medical secretaries at these centers were trained periodically for online and offline data accumulation and data cleaning has been performed regularly. The first results of breast cancer registry program were published in 2014 including demographic, clinical and pathological characteristics of 13.184 patients with breast cancer. This study aimed to evaluate the demographic, clinical, reproductive and histopathologic features and also survival results of 20.000 female BC patients registered into the program, and to compare them with data from other developed or developing countries.

¹Department of Surgery, İstanbul University İstanbul School of Medicine, İstanbul, Turkey

²Department of Surgery, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Florida, USA

³Department of Surgery, Akdeniz University School of Medicine, Antalya, Turkey

Figure 1. The estimated age-adjusted breast cancer risk in women (with 5-year intervals) according to the 2013 census data

Materials and Methods

Data recorded in NBCRP between May 1, 2005 to April 17, 2017 were evaluated. The primary outcome included overall demographic, clinical, reproductive, pathological characteristics and overall survival data of around 20,000 patients diagnosed with breast cancer in Turkey. In the scope of analysis there were 242 different variables covered under 10 main categories. The main categories were identity, history, clinical information, reproductive functions, histologic diagnosis, surgical treatment, postoperative pathology, chemotherapy, radiotherapy, hormonotherapy and follow-up. Modified Scarff Bloom Richardson histological grading was used in the morphological assessment of the degree of differentiation in breast cancer (5, 6).

Statistical Analysis

Data were analyzed using the Statistical Package for Social Sciences for Windows 20.0 (IBM Corp.; Armonk, NY, USA) program. Categorical variables were compared using chi-square analysis and presented as frequencies and percentage. Kolmogorov-Smirnov test was used to evaluate the distribution of continuous variables. Data were presented as mean and standard deviation or median and range. For non-parametric data, Mann-Whitney U test was used to compare means of two independent groups, and Kruskall-Wallis test was used to compare means of more than two independent groups. Where appropriate, continuous variables were regrouped and separately analyzed based on their cutoff points and groupings. The correlation between categorical variables was assessed using the chi-squared test, and data presented as frequencies and percentage. The comparisons between the survival times in subtypes were made through Log-Rank test. Survival rates as well as mean survival times and 95% confidence interval of averages were demonstrated in the corresponding rows for the groups compared in the tables. A p value lower than 0.05 was considered as statistically significant. The survival curves of the groups found to be statistically significant in the analysis were drawn.

Results

After data cleaning, the number of female BC was reduced to 19,503. The estimated age-adjusted breast cancer risk in women according to the 2013 census data is displayed in Figure 1. The median age of patients at diagnosis was 51 [14-97]. The age group 45-49 was the most populated group (16.5%) in the cohort for 5-year age intervals. At the time of diagnosis, 37.5% of patients were premenopausal. The mean menarche age was 13.4 (±1.0) years, the mean breastfeeding duration

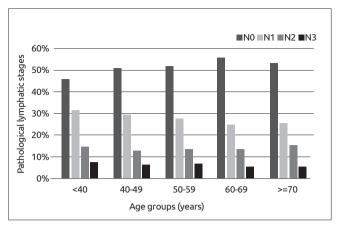
Table 1. Patients and tumor characteristics

Number of patients	19503
Mean age (±SD)	51.8 (±12.6)
<40 years old	3101 (16.6%)
≥40 years old	15604 (83.4%)
Histopathologic subtype	
Invasive ductal cancer	7726 (76.9%)
Invasive lobular cancer	649 (6.5%)
Invasive mixed type	425 (4.2%)
Other	1241 (12.4%)
Histologic grade	
I	562 (7.7%)
II	3416 (46.8%)
III	3320 (45.5%)
Receptor status	
ER	5745 (72.5%)
PR	4736 (62.5%)
HER-2	1659 (21.8%)
Ki-67 (≤%14)	378 (%35.0)
Pathologic stages at the time of diagnosis	
Stage I+II	4990 (76.8%)
Stage III+IV	1728 (23.2%)
Obstetric history	
Nulliparous	1281 (13.6%)
Monoparous	1227 (13.1%)
Spontaneous abortion	1494 (19.3%)
Induced abortion	2326 (30.0%)
Molecular subtypes	
Luminal A	3326 (57.7 %)
Luminal B	1187 (50.3 %)
HER-2	555 (12.2 %)
TNG	695 (8.1 %)
5-year overall survival	3555 (85.8%)
10-year overall survival	4826 (75.7%)
ER: Estrogen; PR: Progesterone; TNG: triple negative	e

was 24.2 (±17.7) months, missed abortion rate was 19.4%, induced abortion rate was 29.9%, the rate of oral contraceptive use was 14.7%, and child delivery rate was 86.3% (mean number of births given was 2.4±1.8). Only 8.2% of the patients diagnosed with breast cancer received hormone replacement therapy (HRT) on a regular basis, while 27% of them received HRT for more than 5 years. 33.9% of the patients had a family history of any cancer, and 15.8% of them had a family history of breast. 3.3% of them had family history of ovarian cancer, respectively. Patients and tumor characteristics are displayed in Table 1.

Breast conserving surgery rate was 39.3%, and mastectomy rate was 60.7%. Sentinel lymph node biopsy was performed for the patients who were negative for axillary involvement in clinical examination (69.4%); 55.3% of the patients underwent axillary lymph node dissection (ALND). When the surgical interventions are divided into groups regarding years before and after 2000, breast conserving surgery (BCS) rate was 25% before and 45% after the year 2000. As a result, the rate of patients with mastectomy decreased from 75% to 60.7% in the last 15 years.

Among patients with complete histopathologic diagnostic data, the majority (72.8%) of them had invasive ductal cancer (IDC); 10.1% of them had invasive lobular cancer (ILC) or invasive mixed cancers (IMC=IDC+ILC). A comparison between age groups and histopathological tumor types (IDC, ILC and IMC) revealed that the rate of IDC was 91.5% among young women (<40 years) while it was 87% for older women (≥40 years) (p<0.001).


The distribution of patients whose Modified Scarff Bloom Richardson HG were registered in the database was as follows: HG I 7.8%, HG II 46,8%, HG III 45.5%. Majority of the patients had HG II or III tumors, whereas HG declined with an inverse relation with the increase in the age at diagnosis (p<0.001). The histological grades of tumors (HG) were divided into two groups as HG I+II and HG III, and their associations with histological types (IDC and ILC/IMC) were studied. Nearly half of all patients (45.5%) had HG III. 46,4% of patients with IDC had HG III, while 37.3% of patients with ILC/IMC had HG III (p<0.001).

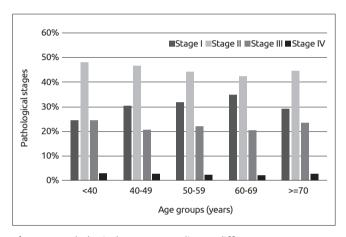
The distribution of the pathologic stages of these patients at diagnosis was as follows: Stage 0 (DCIS) 4.7%, Stage I 28.5%, Stage II 48.3%, Stage III 14.5% and Stage IV 4%. The rate of Stage I breast cancer was 21.9% in women aged \leq 40 years; while it was 30.6% in the age group 50-59 (p<0.05). Percentage distribution of the pathological lymphatic stages according to different age groups are displayed in Figure 2. As for the association between pathologic stages and age groups, it was found that pathologic stage decreased with advancing age at diagnosis (Figure 3, p=0.002).

The mean tumor diameter was 2.5±1.7 cm, while the median tumor size was 2 cm [0.1–25 cm]. The tumor diameter in young patients (<40 years) was significantly larger (mean diameter 2.8; median diameter 2.5 cm; p<0.001). Lymph node involvement rates of patients diagnosed with invasive breast cancer were as follows: pN0 51.4%; pN1 28.1%; pN2 13.9% and pN3 6.6%. The clinical stages of patients were Stage-0 2.3%, Stage I 29.7%, Stage II 44.2%, Stage III 21.4% and Stage IV 2.4%. Associations of pathological lymphatic stages with different tumor diameter groups are displayed in Figure 4.

Estrogen receptor positivity was (72.5%). The patients were divided into two age groups (<40 y/o and ≥40 y/o) to compare ER positivity between these groups. ER positivity was 65.9% in young (<40 y/o), and 73.8% in older patients (age ≥40 y/o, p<0.001). Progesterone receptor positivity was 62.3%. PR positivity rate was higher in older patients (≥40 y/o) (62.5% vs. 60.5%, p>0.05). HER-2 receptor expression was analyzed through immuno-histochemical (IHC) and fluorescence in situ hybridization method (FISH/SISH). It was found that 21.8% of the patients were HER-2 positive.

In the cohort, rate of Ki-67 value >14% was 62.7%, while the percentage of those with a Ki-67 value of >20% was 54.2%. 59% of the

Figure 2. Pathological lymphatic stages according to different age groups



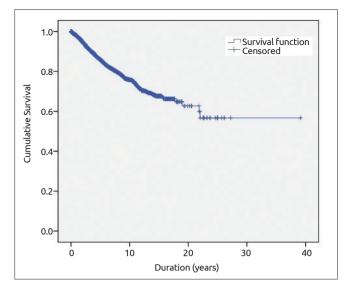


Figure 3. Pathological stages according to different age groups

Figure 4. Associations of pathological lymphatic stages with different tumor diameter groups

patients were positive for lymphovascular invasion. Estrogen (ER), progesterone (PR) and HER-2 receptor expression were positive in 76.9%, 65.8% and 21.8% of the patients, respectively.

The mean follow-up time was 51.6 months and loco-regional recurrence rate was 3.7% in this period. The overall survival rate was 85.8% for 5-years and 75.7% for 10-years. Young age (<40 y/o, p<0.049), small tumor size (<5 cm vs. ≥5 cm, p=0.017), high HG (I+II vs. III; p=0.003), PR status (positive or negative; p<0.001), pathologic stage (Stage I vs. III, p=0.036), and triple negative and HER-2 positive

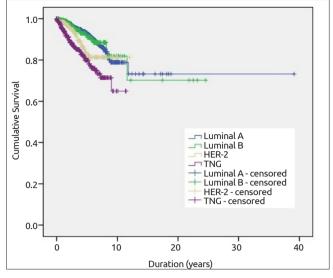


Figure 5. Overall survival rate of breast cancer patients

Figure 6. Overall survival according to different molecular subtypes

Table 2. Comparison of data of breast cancer patients in 2012 and 2017

	TFBDS Registry 2005-2010 13.120 patients	TFBDS Registry 2005-2015 20.000 patients	Difference in 5-years
Mean age, years	51.6±12.6	51.8±12.6	0.2
<40 years, %	17.1	16.5	0.6
>70 years, %	10	10	-
Pre-menopausal, %	45	37.7	7.3
DCIS, %	4.9	4.7	0.2
pN0, %	49.8	51.4	1.6
Mean tumor size (cm)	2.5±1.6	2.5±1.7	-
pStage I, %	26.6	29.7	3.1
BCS, %	35	39	4
5-year overall survival, %	-	86	
DCIS: Ductal carcinoma in situ. BCS: Bre	ast conserving surgery inStage: Patholo	ogic stage	

molecular subtypes (p<0.001; p<0.001) were found related with locoregional recurrence. Overall survival rate and overall survival according to different molecular subtypes are displayed in Figure 5 and Figure 6, respectively.

Distant metastasis rate was 9% in 4.3 years of follow-up period. Young age (<40 vs \geq 40; p<0.001), type of surgery (mastectomy vs. BCS; p<0.001), pathologic lymphatic stage (pN0 vs pN1-3, p<0.001), menopausal status (pre- vs post-menopausal; p=0.013), tumor size (<2 cm vs. \geq 2 cm p<0.001), histopathological type (IDC vs ILC or IMC, p=0.002), HG (I+II vs III, p=0.002), and molecular subtypes (Luminal A vs. others p<0.001; Luminal A/B vs. HER-2/TNG p<0.001; TNG vs. others p<0.001) were found to be associated with distant metastasis.

When we compared these results with our previous study, the rate of premenopausal women decreased from 45% to 37.7%, the rates of pathologic Stage I breast cancer and breast conserving surgery (BCS)

increased 3.1% and 4% respectively (Table 2). The rates of DCIS and tumor size of invasive breast cancer did not change in this 5-year period.

Discussion and Conclusion

Although breast cancer mortality rates are decreasing in most high-income countries, incidence and mortality rates are increasing particularly in rapidly developing countries (7). Such increase is explained by changes in life styles (changes in the reproductive functions such as early menarche, nulliparity, delivery after 35 years old, less breast feeding, late menopause, etc.), nutritional habits (obesity, inactivity etc.), increased population growth, aging and increasing opportunistic screening (8). Although it is a possibility that improvements in access to medical care over time, might have resulted in inclusion of patients with milder disease in estimates, the reported incidence of breast cancer in Turkey increased more than 2-folds from 24/100.000 in 1993 to 50/100.000 in 2017.

Cancer registry is the starting point of cancer control. Unless accurate data are obtained and statistically assessed, prioritization cannot be achieved and sound decisions cannot be made for development of national health policies, strategic plans and utilization of limited resources. Currently, there are around 200 population-based registries maintained across the world. Under the light of these registries, IARC (International Agency for Research on Cancer) under the World Health Organization (WHO) publish global health statistics covering all countries in the world. The incidence and mortality analyses on cancer that is performed every 3-5 years are published as GLOBO-CAN for the use of the scientific community. One of the most popular registries is the SEER Program (The Surveillance, Epidemiology, and End Results). It is affiliated to the National Cancer Institute (NCI) and started collecting data in 1973 as the official source of data in the USA on cancer incidence and survival (9). On the European side, in 1995, the European Commission has supported the European Network of Cancer Registries (ENCR) which was set up in 1990 (10). In Turkey, the first cancer registry was kicked off in 1982. In the late 90's, İzmir Cancer Registry became a member of the IARC, and of the ENCR. In 2002 and 2008, IARC used İzmir Cancer Registry data for GLOBOCAN, which served as an endorsement of the quality of data from the province of İzmir (11). Eventually, local initiatives created a stronger national emphasis and National Breast Cancer Database (NBCD) was launched for use in 2005. The ultimate aim is to contribute to the national cancer registry program by revealing very different characteristics of a large patient population.

Today we understand that the rapid westernization especially in the younger population, increases the breast cancer incidence in Turkey. The rate of young female (<40) and premenopausal patients with invasive breast cancer were 16.6% and 37.5%, respectively, in our study. Complete prevalence distributions of patients (with invasive breast cancer) younger than 40 and 50 years old were 1.1% and 7.5%, respectively, on January 1, 2015 according to the SEER database (12). The Ministry of Health of the Republic of Turkey has changed the screening period from 50-69 to 40-69 years of age due to the NBCD results revealing that the distribution of breast cancer cases under 50 years of age constitutes 47% of all cases in Turkey.

Breast cancer is most frequently diagnosed among women aged 55-64 in developed countries; median age at diagnosis is 62 in USA. The most populated group is 45-49 in Turkey, where the median age is 51. This can be explained by the young population age. In the United States, DCIS accounts for 20% of all newly diagnosed breast cancers (13). In Turkey, DCIS patients constituted only 5% of all patients diagnosed with breast cancer. The mean tumor diameter was 2.5±1.7 cm. It can be thought that this situation is related to the lack of community-based screening, lack of education and low breast cancer awareness. In order to demonstrate the feasibility of well-organized, continuous and invitation-driven community-based screening program in line with the social, cultural, educational and economic structure of Turkey, "Bahçeşehir Community-Based Mammographic Screening Project" was launched in Bahçeşehir for up to 10 years (2008-2018). In this Project, among patients diagnosed with breast cancer, 19% had ductal carcinoma in situ (DCIS), and 55% had stage I invasive breast cancer (14). These results indicate the possibility of a successful community-based screening in our country.

The molecular sub-type analysis of the tumors in this study showed that 57.7% of the tumors were luminal A (ER and/or PR positive,

HER-2 negative), 20.6% were luminal B (ER and/or PR positive, HER-2 positive), 9.6% were HER-2 type (ER and PR negative, HER-2 positive) and 12.1% were triple negative. Studies comparing the patients with breast cancer detected through screening and symptomatic breast cancer cases found that tumor diameter is smaller and the rate of luminal A subtype of breast cancers is higher in patients diagnosed with breast cancer through screening (15, 16). In 2011, St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer recommended the clinical use of Ki-67 index (cut-off value >14%), to distinguish luminal A and B molecular subtypes (17). Many specialized breast centers updated their data based on modern definitions of molecular subtypes and some centers reported their updated results. For example, the molecular subtypes of regularly followed-up 2032 patients from Istanbul Florence Nightingale Breast Center were as follows; Luminal A and B (Ki67 >14%, HG=3) were 30,4% and 50,3%, respectively; HER-2 positive group was 8,1%; triple negative breast cancer was 11,2% (18, 19).

The mortality rates of breast cancer cases in USA decreased from 24.1 in 2005 to 21.5 in 2010 and to 20.3 in 2015; and overall 5-year survival rate is 90.9%. The 5-year survival rate was found to be 86% in this study. Thus, it is imperative that increased use of screening programs and increasing awareness will result in a reduction in the tumor diameter and regional lymphatic involvement in breast cancer patients.

This study highlights the impact of mammographic screening and the benefits of a structured national breast cancer registry. The NBCRP registry, constituting a national framework for breast cancer control, facilitates the evaluation of the improvement in screening, ongoing awareness, education and training. Despite increasing number of screening centers and free-of-charge mammography (ages 40 to 69) and mobile screening systems in recent years, a significant portion of patients were diagnosed at advanced stage due to lack of breast cancer awareness. In contrast with the study published 5 years ago, there was a decrease in the rate of pre-menopausal women and an increase in the breast conserving surgery.

Ethics Committee Approval: N/A

Informed Consent: Informed consent was not taken due to retrospective design of the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - V.Ö., T.Ö., V.D.; Design - V.Ö., T.Ö., V.D.; Supervision - V.Ö.; Resources - V.Ö., T.Ö., V.D.; Materials – V.Ö.; Data Collection and/or Processing - V.Ö., T.Ö., V.D.; Analysis and/or Interpretation - V.Ö., T.Ö., V.D.; Literature Search - V.Ö., T.Ö., V.D.; Writing Manuscript - V.Ö., T.Ö., V.D.; Critical Review - V.Ö., T.Ö., V.D.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424. (PMID: 30207593) [CrossRef]

- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pińeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144: 1941-1953. (PMID: 30350310) [CrossRef]
- Ozmen V. Breast Cancer in Turkey: Clinical and Histopathological Characteristics (Analysis of 13.240 Patients). J Breast Health 2014; 10: 98-105. (PMID: 28331652) [CrossRef]
- Ozmen V, Boylu S, Ok E, Canturk NZ, Celik V, Kapkac M, Girgin S, Tireli M, Ihtiyar E, Demircan O, Baskan MS, Koyuncu A, Tasdelen I, Dumanli E, Ozdener F, Zaborek P. Factors affecting breast cancer treatment delay in Turkey: a study from Turkish Federation of Breast Diseases Societies. Eur J Public Health 2015; 25: 9-14. (PMID: 25096257) [CrossRef]
- Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957; 11: 359-377. (PMID: 1349978) [CrossRef]
- Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I.
 The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991; 19: 403-410.

 (PMID: 1757079) [CrossRef]
- DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol Biomarkers Prev 2015; 24: 1495-1506. (PMID: 26359465) [CrossRef]
- Porter P. "Westernizing" women's risks? Breast cancer in lower-income countries. N Engl J Med 2008; 358: 213-216. (PMID: 18199859)
 [CrossRef]
- Ries LG, Pollack ES, Young JL Jr. Cancer patient survival: Surveillance, Epidemiology, and End Results Program, 1973-79. J Natl Cancer Inst 1983; 70: 693-707. (PMID: 6572758)
- European Commission. European Network of Cancer Registries. Luxembourg, Office for Official Publications of the European Communities, 1995.
- Tuncer M, Özgül N, Olcayto EÖ, Gültekin M, Erdin B. Ulusal Kanser Programı 2009-2015, T.C. Sağlık Bakanlığı Kanserle Savaş Dairesi başkanlığı 2009: ISBN 978-975-590-285-2.

- Noone AM, Howlader N, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2015/, based on November 2017 SEER data submission, posted to the SEER web site, April 2018.
- Siegel R.L., Miller K.D., and Jemal A. Cancer statistics. CA Cancer J Clin 2016; 66: 7-30. (PMID: 26742998) [CrossRef]
- Kayhan A, Gurdal SO, Ozaydin N, Cabioglu N, Ozturk E, Ozcinar B, Aribal E, Ozmen V. Successful first round results of a Turkish breast cancer screening program with mammography in Bahcesehir, Istanbul. Asian Pac J Cancer Prev 2014; 15: 1693-1697. (PMID: 24641392) [CrossRef]
- Kim J, Lee S, Bae S, Choi MY, Lee J, Jung SP, Kim S, Choe JH, Kim JH, Kim JS, Lee JE, Nam SJ, Yang JH. Comparison bet-ween screen-detected and symptomatic breast cancers according to molecular subtypes. Breast Cancer Res Treat 2012; 131: 527-540. (PMID: 22042364) [CrossRef]
- 16. Újhelyi M, Pukancsik D, Kelemen P, Kovács E, Kenessey I, Udvarhelyi N, Bak M, Kovács T, Mátrai Z. Does breast screening offer a survival benefit? A retrospective comparative study of oncological outcomes of screen-detected and symptomatic early stage breast cancer cases. Eur J Surg Oncol 2016; 42: 1814-1820. (PMID: 27424787) [CrossRef]
- Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes - dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22: 1736-1747. (PMID: 21709140) [CrossRef]
- Çelebi F, Pilancı KN, Ordu Ç, Ağacayak F, Alço G, İlgün S, Sarsenov D, Erdoğan Z, Özmen V. The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer. Diagn Interv Radiol 2015; 21: 448-453. (PMID: 26359880) [CrossRef]
- Alco G, Bozdogan A, Selamoglu D, Pilanci KN, Tuzlali S, Ordu C, Igdem S, Okkan S, Dincer M, Demir G, Ozmen V. Clinical and histopathological factors associated with Ki-67 expression in breast cancer patients. Oncol Lett 2015; 9: 1046-1054. (PMID: 25663855) [CrossRef]

Imaging Findings and Clinicopathological Correlation of Breast Cancer in Women under 40 Years Old

Gamze Durhan¹, Aynur Azizova¹, Ömer Önder¹, Kemal Kösemehmetoğlu², Jale Karakaya³, Meltem Gülsün Akpınar¹, Figen Demirkazık¹, Ayşegül Üner²

ABSTRACT

Objective: The aim of this study was to evaluate the clinical, imaging and histopathological features of breast cancer in patients aged under 40 years of age. The relationship between radiological characteristics and histopathological features was also investigated.

Materials and Methods: The study included 131 patients aged under 40 years, diagnosed pathologically with breast cancer. A retrospective evaluation was made of the imaging and clinicopathological findings and the relationship between pathological and imaging findings was investigated.

Results: Most of the cancers were detected from clinical symptoms, especially a palpable mass (76.3%). The most common histological type of tumor was invasive ductal carcinoma and 64.8% of the tumors were high grade tumors. The predominant features were irregular borders (92.4%), microlobulated-angulated contours (43.5%), hypo-homogeneous internal echogenicity (80.9%) on ultrasonography, and the presence of a mass (41.2%) and suspicious microcalcifications (40.2%) on mammography. Magnetic resonance imaging commonly showed mass enhancement (66.7%) with type 2 or 3 dynamic curve (92.6%). High-grade tumors were associated with posterior acoustic enhancement (p: 0.03) while low-grade tumors presented with spiculated margins more than high grade tumors (p: 0.04).

Conclusion: Breast cancer in women aged under 40 years usually presents with a self-detected palpable mass and can show different imaging findings according to the histological grade. Ultrasonography is the main modality for the diagnosis of breast cancer in young women, but mammography and magnetic resonance imaging can help in both diagnosis and evaluation of the extent of disease.

Keywords: Young women, breast cancer, radiological findings, pathology features

Cite this article as: Durhan G, Azizova A, Önder Ö, Kösemehmetoğlu K, Karakaya J, Akpınar MG, Demirkazık F, Üner A. Imaging Findings and Clinicopathological Correlation of Breast Cancer in Women under 40 Years Old. Eur J Breast Health 2019; 15(3): 147-152.

Introduction

Breast cancer is less common in women under 40 years old and this age group constitutes approximately 7% of all women diagnosed with breast cancer (1, 2). However, it can have a worse prognosis and more aggressive biological behavior than breast cancer in older patients. Previous studies have shown that young women are diagnosed at a later stage with highly proliferative, poorly differentiated, estrogen receptor negative tumors with the presence of lymphovascular invasion (3-5).

The radiological findings of breast cancer in young women can vary and the diagnosis of cancer can be more challenging than in an older population as there are also different histopathological features (6, 7). Most medical associations, including the American College of Radiology and Society of Breast Imaging, recommend annual breast cancer screening starting at the age of 40 and the sensitivity of mammography is lower in young women due to denser breast tissue (8, 9). The use of breast ultrasonography (US) is preferred for women under 40 years old in the diagnosis of breast disease, but mammography or Magnetic Resonance Imaging (MRI) should be performed if there is a suspicious finding for malignancy (10).

Therefore, the aim of this study was to evaluate the clinical, imaging and histopathological features of breast cancer in patients aged <40 years. The secondary objective was to investigate the relationship between radiological characteristics and histopathological features.

Corresponding Author:
Gamze Durhan, e-mail: gamzedurhan@gmail.com

Received: 07.12.2018 Accepted: 06.03.2019 Available Online Date: 17.06.2019

¹Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey

²Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey

³Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey

Materials and Methods

Patients

Approval for the study was granted by the Hacettepe University Ethics Commission. Informed consent was not required because of the retrospective nature of the study.

A retrospective review was made of 2619 women applied with breast core needle biopsy between June 2011 and December 2017. A total of 443 patients were under 40 years old. Those with benign pathology results were excluded from the study and thus 131 patients diagnosed with breast cancer were included for evaluation in the study.

Imaging

All patients underwent ultrasonography, 107 patients had mammography and only 27 patients had MRI. Patients aged >35 years with a family history and those with a personal history of breast cancer underwent mammography as the initial modality. For other patients, US was applied first and then mammography was performed because of suspicious findings. MRI was applied to 27 patients to evaluate the extent of breast cancer before breast-conserving surgery.

The US images were obtained using a 12 MHz linear probe on a Toshiba Aplio 400 device (Toshiba Medical Systems Corporation, Otawara, Japan). For the mammograms, standard mediolateral oblique and craniocaudal images were obtained using Seno essential mammography systems (General Electric, USA). The MRI scans were acquired with the patient in the prone position in a 1.5-Tesla MRI scanner (Signa HD, GE Medical Systems, USA) using a fourchannel phased array breast coil. The imaging protocol included the following sequences: axial T2-weighted fat saturated (TR/TE 5100/90 ms, slice thickness=2 mm, flip angle 90°, matrix 256x256), axial echo-planar DWI (TR/TE 2500/72, slice thickness = 3 mm, matrix 256x256, diffusion gradient with b values of 0 and 500 s/ mm²), and axial T1-weighted fast spin echo pre-contrast MR images (TR/TE 4.3/2.1 ms, slice thickness=2 mm, flip angle 90°, matrix 512x512). Dynamic breast examination was performed after the injection of intravenous contrast material (Dotarem, Guerbet, Roissy, France) through the antecubital vein at a dose of 0.1 mmol/kg using a power injector (Medrad, Bayer HealthCare, Netherlands). After pre-contrast T1-weighted images, the following 5 axial T1-weighted post-contrast dynamic sequences (TR/TE 4.5/2.1 ms, slice thickness=2 mm, flip angle 10°, matrix 512x512) were obtained at intervals of 90 seconds.

Pathological examination

The pathological reports were reviewed to determine histopathological type, tumor grade and immunohistochemical findings including Estrogen Receptor (ER), Progesterone Receptor (PR) and Human Epidermal Growth Receptor 2 (HER 2) status. HER 2 status was defined as positive for tumors with a score of 3+ and negative for tumors with scores of 0 and 1+. In tumors with a 2+ score, gene amplification using Fluorescence in situ Hybridization (FISH) analysis was used to confirm the HER 2 status. Testing negative for all three hormone receptors was defined as triple negative breast cancer.

Statistical Analysis

Descriptive statistics including patient age, tumor size, clinical presentation, histopathological type, grade, immunohistochemical and radiological findings were presented as frequencies and percentages of categorical variables and means and standard deviations of quan-

titative variables. The Independent Samples t-test was performed to compare the means of two groups (grade1-2 and grade 3) and Pearson chi-square test, Yates' chi-square test or Fisher Exact tests were used to compare differences between groups for categorical variables including radiological findings and histopathological findings Spearman's rho correlation was used to examine the relationship between two quantitative variables. A value of p<0.05 was accepted as statistically significant. All statistically analyses were performed using The Statistical Package for Social Sciences version 23.0 software (IBM Corp.; Armonk, NY, USA).

Results

Clinical and histopathological data

The clinical and histopathological features are presented in Table 1. Most cancers were detected from clinical symptoms, especially a palpable mass (101/131, 77% symptomatic, 100/131 patients with a palpable mass). 22.9% of patients were asymptomatic and were diagnosed with breast cancer when they underwent breast US due to personal or family breast cancer history. The most common histological type of tumor was invasive ductal carcinoma, 64.8% of tumors were high-grade, and 17.6% of tumors were triple negative.

Table 1. Clinical and pathological characteristics of 131 patients

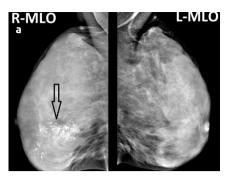
Characteristics	Number (%)
Mean age (year±SD)	34.2±3.6
Clinical presentation	
-Palpable mass	100 (76.3)
-Personal breast cancer history	10 (7.6)
-Family breast cancer history	20 (15.3)
-Bone metastasis	1 (0.8)
Histopathological type	
-Invasive ductal carcinoma	96 (73.3)
-Invasive lobular carcinoma	5 (3.8)
-Mixed carcinoma	20 (15.3)
-Mucinous type	3 (2.3)
-DCIS	7 (5.3)
Tumor Grade	
-Grade 1	4 (3.1)
-Grade 2	42 (32.1)
-Grade 3	85 (64.8)
Immunohistochemical findings	
ER positivity	87 (66.4)
PR positivity	71 (54.2)
HER 2/Cerb positivity	34 (26.0)
Triple negative	23 (17.6)

SD: Standard deviation; DCIS: Ductal carcinoma in situ; ER: Estrogen receptor; PR: Progesterone receptor; HER 2: Human epidermal growth factor receptor-2

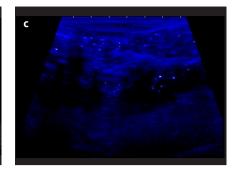
Table 2. Radiological findings of lesions

Findings	Number (%)
Size (±SD) mm	36.3 (±28.3)
Axillary lymphadenopathy in US	79 (60.3)
Skin thickening	24 (18.3)
Multifocality	49 (37.4)
BI-RADS category according to US-MMG	
-BI-RADS 4A	8 (6.1)
-BI-RADS 4B	16 (12.2)
-BI-RADS 4C	16(12.2)
-BI-RADS 5	91 (69.5)
US Findings (131 patients)	
-No abnormality	5 (3.8)
-Shape	
-Irregular	121 (92.4)
-Oval-round	5 (3.8)
-Margin	
-Circumscribed	2 (1.5)
-Microlobulated and angulated	57 (43.5)
-Indistinct	45 (34.4)
-Spiculated	22 (16.8)
-Posterior acoustic feature	
-No feature	76 (58.0)
-Acoustic enhancement	29 (22.1)
-Acoustic shadowing	26 (19.8)
-Echogenicity	
-lso-homogeneous	2 (1.5)
-Hypo-homogeneous	106 (80.9)
-Heterogeneous	18 (13.8)
Mammography findings (107 patients)	
-No abnormality	17 (15.9)
-Abnormality	90 (84.1)
-Microcalcifications	43 (40.2)
-Asymmetrical density	29 (27.1)

Imaging findings


The radiological findings of tumors are summarized in Table 2. Breast Imaging Reporting and Data System (BI-RADS) categorisation was applied according to the US and mammography findings. Most patients were categorized as BI-RADS 5, and only 8 patients as BI-RADS 4A. The mean size of tumors was 36.3 mm. 60.3% of patients had axillary lymphadenopathy, which was also proven to be malignant pathologically. Skin thickening was present in 24 (18.3%) patients, and multifocal/multicentric tumors were seen in 49(37.4%).

	3
-Distortion	7 (6.5)
-Mass	44 (41.2)
-Mass shape	
-Oval-round	9 (8.3)
-Irregular	35 (32.7)
-Mass margins	
-Circumscribed	1 (0.9)
-Microlobulated	5 (4.6)
-Indistinct	13 (12.1)
-Obscured	17 (15.8)
-Spiculated	8 (7.4)
MRI findings (27 patients)	
-Mass	18 (66.7)
-Non-mass enhancement	9 (33.3)
- Kinetic curve	
-Type 1	2 (7.4)
-Type 2 and 3	25 (92.6)
-T2W signal intensity	
-Isointense	18 (66.7)
-Hyperintense	9 (33.3)
Grade 1-2 (46)	
-Spiculated margins	12 (26.1)
-Posterior acoustic enhancement	5 (10.9)
-Heterogeneous internal echogenicity	4 (8.7)
-Microcalcifications	19 (50)
-Mass enhancement in MRI	4 (57.1)
-T2W signal intensity	1 (14.3)
Grade 3 (85)	
-Spiculated margins	10 (11.8)
-Posterior acoustic enhancement	24 (28.2)
-Heterogeneous internal echogenicity	14 (16.5)
-Microcalcifications	24 (34.8)
-Mass enhancement in MRI	14 (70)
-T2W signal intensity	8 (40)


SD: Standard deviation; US: Ultrasonography; MMG: Mammography; MRI: Magnetic resonance imaging; BI-RADS: Breast imaging reporting and data system

US

Ultrasonography was performed on all the patients. In 5 (3.8%) patients, no abnormality was determined on US and these cases were diagnosed with microcalcifications seen on mammography. The predominant features on US were irregular shape (121, 92.4%), microlobulated-angulated margins (57, 43.5%) and hypo-homogeneous internal echogenicity (106, 80.9%). Most patients (76, 58%) did not have a posterior acoustic feature, and 22.1% of patients demonstrated posterior acoustic enhancement.

Figure 1. a-c. Malignant pleomorphic microcalcifications are seen on mammography (a), ultrasonography (b) and micropure imaging (c) in a 27-year old patient with grade 3 breast cancer

Mammography

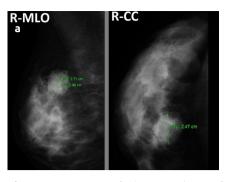
Mammography was applied to 107 patients (81.6%) and on 84.1 % of these images an abnormality was determined. The most common abnormality on mammography was the presence of a mass (44/107, 41.2%), followed by suspicious microcalcifications (43/107, 40.2%) (Figure 1). In 5 patients, the diagnosis was made based on the presence of microcalcifications on mammography only. The most frequently seen shape on mammography was irregular, and the most common margin feature was obscured.

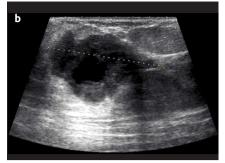
MRI

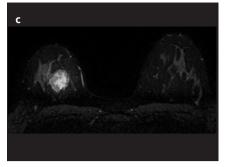
All of the patients were diagnosed with US and mammography findings. MRI was applied to 27 (20.6%) patients to evaluate the extent of the disease before surgery. Of these 27 cases, 18 (66.7%) presented with mass enhancement, and 9 (33.3%) presented with non-mass enhancement. Most patients demonstrated type 2 or 3 dynamic curve (25/27, 92.6%). In 9 of 27 (33.3%) patients the cancer was hyperintense, and the T2W signal intensity was predominantly isointense in 18 (66.7%).

Relationship between histopathological features and imaging findings High-grade tumors were associated with posterior acoustic enhancement (grade1, 2: 10.9%, grade 3: 28.2% p: 0.03), and low-grade tu-

Figure 2. a, b. Grade 2 invasive ductal cancer (a) shows spiculated margins, grade 3 invasive ductal cancer (b) demonstrates posterior acoustic enhancement on ultrasonography


mors presented with spiculated margins more than high-grade tumors (grade 1-2: 26.1%, grade 3: 11.8% p: 0.04) (Figure 2).


High pathological grade tumors showed more internal heterogeneity than grade 1 and 2 tumors (grade1-2: 8.7%, grade 3:16.5% p: 0.09) (Figure 2). On MRI, T2W hyperintensity was more commonly seen in high-grade tumors than low-grade tumors (grade1, 2: 14.3%, grade 3: 40% p: 0.3). (Figure 3). Skin thickening (grade 1, 2: 13%, grade 3: 21.2% p: 0.3) and the presence of axillary lymphadenopathy (grade 1, 2: 50%, grade 3: 65.9% p: 0.1) were more frequently seen in high-grade tumors than low-grade tumors, but these findings did not reach statistical significance.


The histopathological grade did not show any association with the other radiological findings including shape, margins, and microcalcifications. No statistically significant relationship was determined between immunohistochemical findings and imaging findings.

Discussion and Conclusion

Breast cancer in young women is uncommon but shows more aggressive histopathological features and has a poorer prognosis (5, 11, 12). In the current study, the majority of breast cancers in women under

Figure 3. a-c. Imaging findings are shown of a 26-year old patient with grade 3 invasive ductal carcinoma. Mediolateral and craniocaudal mammography images (a) demonstrate round shape, ultrasonography image (b) shows internal heterogeneity and posterior acoustic enhancement and magnetic resonance image (c) indicates T2W hyperintensity

40 years old presented symptomatically especially with a palpable mass and more than half of the patients had axillary lymphadenopathy on US at the time of diagnosis. With the exception of the high-risk group, young women are not included in breast screening programs. The reason for a poorer prognosis may be a late diagnosis and axillary or distant metastasis at diagnosis. However, several studies have shown that breast cancer in young women has a higher percentage of negative ER and PR receptors, higher lymphovascular invasion, grade and expression of proliferation markers including KI-67 and cyclins (12-14). Similar to a previous study, the findings of the current study showed that breast cancer in women under 40 years old was associated with a higher histological grade (6).

Radiological diagnosis of breast cancer in young women is more challenging compared to older counterparts. Most medical associations recommend annual breast cancer screening starting at the age of 40 years old for women at average risk. Mammography is the main modality for breast cancer screening (9, 15). Breast density can hide breast cancer and therefore mammography sensitivity is decreased in young women because of the higher breast tissue density (16). Due to the higher density, overdiagnosis and accumulation of radiation in young women, ultrasonography is the primary modality for the diagnosis of breast cancer. In the current study, ultrasonography was performed on all patients and with the exception of 5 patients, there was an abnormality in all patients. Of the patients who underwent mammography, an abnormality was detected in 84.1%. Moreover, 5 patients who could not be diagnosed by US were diagnosed by mammography. On mammography the most common findings of tumors were microcalcifications and mass. The shape of the masses was usually irregular, which was consistent with the findings of previous studies (6, 17). The predominant margin features were microlobulated-angulated on US and obscured in mammography. In contrast to the current study, Bullier et al. (17) found a predominance of spiculated margins in women with breast cancer aged <40 years. The lower rate of spiculated margins in the current study could be attributed to the higher percentage of high-grade tumors.

Magnetic Resonance Imaging was performed on patients for evaluation of the extent of cancer before breast cancer conserving surgery. Most patients showed mass enhancement, T2 isointensity and type 2 or 3 dynamic curves similar to the results of previous studies (6, 17, 18). Dynamic curves (92.6 % of patients have type 2/3 curves) in particular could help the radiologist in the diagnosis of breast cancer in young women whose diagnosis can be more challenging than in an older population.

The association between radiological findings and histological grade was also investigated. High-grade tumors were related to posterior acoustic enhancement, while low-grade tumors were related to spiculated margins. Moreover, on MRI T2W, hyperintesity was more commonly seen in high-grade tumors than in low-grade tumors, but this finding could not reach statistical significance probably due to the low number of patients with MRI findings. The results of previous studies supported the current study findings and it has been reported that high-grade and triple negative tumors can mimic benign lesions with circumscribed margins and posterior enhancement (17, 19). Highgrade tumors are known to demonstrate higher cellularity and necrosis, which could be the reason for the internal heterogeneity, posterior acoustic enhancement and T2W hyperintensity. However, low-grade tumors usually show higher stromal reaction and desmoplasia which may cause spiculated margins (17, 20, 21). Women under 40 years old show a diverse distribution of histological grades, as 64.8% of our patients had higher grade tumor. Therefore, due to the different imaging findings of high-grade tumors, breast cancer under 40 years old can show distinct radiological findings from their older counterparts.

There were some limitations of the current study. The major limitation was the retrospective design. Second, the number of patients evaluated with MRI was low and this may have caused the lack of statistical significance. Finally, although the immunohistochemical findings were investigated, molecular subtypes could not be evaluated due to the lack of Ki 67 data in some patients.

In conclusion, breast cancer in women under 40 years old usually presents with a self-detected palpable mass and can show different imaging findings including posterior enhancement, T2W hyperintensity and less spiculated margins due to a higher histological grade. US is the main modality for diagnosis of breast cancer in young women, but mammography and MRI can help both diagnosis and evaluation of the extent of the disease. Awareness of imaging and clinicopathological findings of breast cancer in young women helps the radiologist to make an early and accurate diagnosis, and the clinician to provide the correct treatment.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of Hacettepe University School of Medicine.

Informed Consent: Informed consent was not received due to the retrospective nature of the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - G.D., A.A.; Design - G.D., Ö.Ö.; Supervision - M.G.A., F.D.; Resources - A.A., Ö.Ö.; Materials - K.K., A.Ü.; Data Collection and/or Processing - J.K., K.K.; Analysis and/or Interpretation - J.K., A.Ü.; Literature Search - G.D., A.A.; Writing Manuscript - G.D., Ö.Ö.; Critical Review - M.G.A., F.D.; Other - G.D., A.A.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS. Epidemiology and prognosis of breast cancer in young women. J Thorac Dis 2013; 5 (Suppl 1): S2-S8. (PMID: 23819024)
- Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. Breast cancer before age 40 years. Semin Oncol 2009; 36: 237-249. (PMID: 19460581) [CrossRef]
- Han W, Kim SW, Park IA, Kang D, Kim SW, Youn YK, Oh SK, Choe KJ, Noh DY. Young age: an independent risk factor for disease-free survival in women with operable breast cancer. BMC Cancer 2004; 4: 82. (PMID: 15546499) [CrossRef]
- Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg 2009; 208: 341-347. (PMID: 19317994) [CrossRef]
- Fredholm H, Magnusson K, Lindström LS, Garmo H, Fält SE, Lindman H, Bergh J, Holmberg L, Pontén F, Frisell J, Fredriksson I. Long-term outcome in young women with breast cancer: a population-based study. Breast Cancer Res Treat 2016; 160: 131-143. (PMID: 27624330) [CrossRef]
- An YY, Kim SH, Kang BJ, Park CS, Jung NY, Kim JY. Breast cancer in very young women (<30 years): Correlation of imaging features with clinicopathological features and immunohistochemical subtypes. Eur J Radiol 2015; 84: 1894-1902. (PMID: 26198117) [CrossRef]
- Redmond CE, Healy GM, Murphy CF, O'Doherty A, Foster A. The use of ultrasonography and digital mammography in women under 40 years with symptomatic breast cancer: a 7-year Irish experience. Ir J Med Sci 2017; 186: 63-67. (PMID: 27271165) [CrossRef]
- Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening. Radiographics 2015; 35: 302-315. (PMID: 25763718) [CrossRef]
- Destounis S, Santacroce A. Age to Begin and Intervals for Breast Cancer Screening: Balancing Benefits and Harms. AJR Am J Roentgenol 2018; 210: 279-284. (PMID: 29064754) [CrossRef]
- Yamada T, Mori N, Watanabe M, Kimijima I, Okumoto T, Seiji K, Takahashi S. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics 2010; 30: 1183-1198. (PMID: 20833844) [CrossRef]

- Shannon C, Smith IE. Breast cancer in adolescents and young women. Eur J Cancer 2003; 39: 2632-2642. (PMID: 14642925) [CrossRef]
- Fredholm H, Magnusson K, Lindström LS, Tobin NP, Lindman H, Bergh J, Holmberg L, Pontén F, Frisell J, Fredriksson I. Breast cancer in young women and prognosis: How important are proliferation markers? Eur J Cancer 2017; 84: 278-289. (PMID: 28844016)
- Kollias J, Elston CW, Ellis IO, Robertson JF, Blamey RW. Early-onset breast cancer--histopathological and prognostic considerations. Br J Cancer 1997; 75: 1318-1323. (PMID: 9155052) [CrossRef]
- Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, Luini A, Veronesi P, Intra M, Orecchia R, Catalano G, Galimberti V, Nolé F, Martinelli G, Goldhirsch A. Very young women (<35 years) with operable breast cancer: features of disease at presentation. Ann Oncol 2002; 13: 273-279. (PMID: 11886005) [CrossRef]
- Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, Walter LC, Church TR, Flowers CR, LaMonte SJ, Wolf AM, DeSantis C, Lortet-Tieulent J, Andrews K, Manassaram-Baptiste D, Saslow D, Smith RA, Brawley OW, Wender R. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society. JAMA 2015; 314: 1599-1614. (PMID: 26501536) [CrossRef]
- Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology 1992; 184: 613-617. (PMID: 1509041)
 [CrossRef]
- 17. Bullier B, MacGrogan G, Bonnefoi H, Hurtevent-Labrot G, Lhomme E, Brouste V, Boisserie-Lacroix M. Imaging features of sporadic breast cancer in women under 40 years old: 97 cases. Eur Radiol 2013; 23: 3237-3245. (PMID: 23918218) [CrossRef]
- An YY, Kim SH, Kang BJ. Characteristic features and usefulness of MRI in breast cancer in patients under 40 years old: correlations with conventional imaging and prognostic factors. Breast Cancer 2014; 21: 302-315. (PMID: 22723056) [CrossRef]
- Çelebi F, Pilancı KN, Ordu Ç, Ağacayak F, Alço G, İlgün S, Sarsenov D, Erdoğan Z, Özmen V. The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer. Diagn Interv Radiol 2015; 21: 448-453. (PMID: 26359880) [CrossRef]
- Lamb PM, Perry NM, Vinnicombe SJ, Wells CA. Correlation between ultrasound characteristics, mammographic findings and histological grade in patients with invasive ductal carcinoma of the breast. Clin Radiol 2000; 55: 40-44. (PMID: 10650109) [CrossRef]
- Chang JM, Won JK, Lee KB, Park IA, Yi A, Moon WK. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. AJR Am J Roentgenol 2013; 201: W347-W356. (PMID: 23883252) [CrossRef]

3D Automated Breast Ultrasound System: Comparison of Interpretation Time of Senior Versus Junior Radiologist

Aydan Arslan¹ (10), Gökhan Ertaş² (10), Erkin Arıbal¹ (10)

ABSTRACT

Objective: This study aimed to compare the automated breast ultrasound system (ABUS) reading time of breast radiologist to a radiology resident independent of the clinical outcomes.

Materials and Methods: One hundred women who underwent screening ABUS between July and August 2017 were reviewed retrospectively. Each study was examined sequentially by a breast radiologist who has more than 20 years of experience in breast radiology and third year resident who has 6 months of experience in breast radiology. Data were analyzed with Spearman' correlation, Wilcoxon Signed Ranks Test and Kruskal-Wallis Test and was recorded.

Results: The mean age of patients was 42.02±11.423 years (age range16-66). The average time for senior radiologist was 223.36±84.334 seconds (min 118 max 500 seconds). The average time for junior radiologist was 269.48±82.895 seconds (min 150 max 628 seconds). There was a significant difference between the mean time of two radiologists (p=0.00001). There was a significant difference regarding the decrease in the reading time throughout study with the increase of number of cases read by the breast radiologist (p<0.05); but not with the resident radiologist (p=0.687). There was a correlation between BI-RADS category and reading time for both the breast radiologist and the resident (p=0.002, p=0.00043 respectively) indicating that patients who had findings caused longer reading times.

Conclusion: ABUS reading time may differ according to the experience of the user, however the times of an experienced and non-experienced user is comparable.

Keywords: Automated breast ultrasound, breast ultrasonography, breast cancer, interpretation time of ABUS, average time of ABUS

Cite this article as: Arslan A, Ertaş G, Arıbal E. 3D Automated Breast Ultrasound System: Comparison of Interpretation Time of Senior Versus Junior Radiologist. Eur J Breast Health 2019; 15(3): 153-157.

Introduction

Mammography is the gold standard for breast cancer screening yielding 30% reduction in breast cancer mortality among women aged 50-74 years (1). Mammographic sensitivity for breast cancer decreases significantly with increasing breast density. To overcome this, ultrasonography (US) has been studied as an adjunct to mammography in dense breasts and studies showed significant increase in detection of small cancers when added to mammography (2, 3).

Hand Held Ultrasound (HHUS) is widely available and a well-tolerated method which allows detailed evaluation of the breast and the axilla and has the availability of color Doppler and elastography modes (4, 5). On the other hand, HHUS has several disadvantages. It is time consuming, operator-dependent, not reproducible and requires high level of skill and experience. It has high false positivity rate, lacks standardized techniques, allows only two-dimensional (2D) imaging with a small field of view (FOV) (4, 6-8).

Automated three-dimensional (3D) breast ultrasound (ABUS) was developed to obtain an operator independent system. It is reproducible and obtains three dimensional (3D) high resolution imaging with a large FOV. ABUS is reported as a comfortable and time-efficient technique (7-10). Multiple studies have demonstrated similar sensitivity, cancer detection rate, diagnostic accuracy rates and image quality for both ABUS and HHUS (11-16). The new generation ABUS provides better detection of architectural distortions, lesion localization and typical hyperechoic rim on coronal planes (9, 17, 18). Thick hyperechoic rim is suspicious sonographic finding which suggests

¹Department of Radiology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey

²Department of Biomedical Engineering, Yeditepe University School of Engineering, İstanbul, Turkey

the presence of invasive cancer. However, ABUS has some limitations such as 10% lower cancer detection rate, higher false positive results and recalls, shadowing artefacts, incompatibility for US guided biopsy, limited evaluation of axilla, absence of elastography or Doppler techniques for further characterization of the lesions and relatively higher cost compared to HHUS (4, 18-20).

To our knowledge, limited studies of reading time of US have been reported in the English literature (4, 21-23). The average total time to complete a HHUS is 19 minutes (23). The aim of this study was to assess ABUS reading time and compare the reading times of a breast radiologist and a radiology resident independent of the clinical outcomes.

Materials and Methods

Institutional review board approval (No: 2018-2/9) was obtained for this study by Acıbadem Mehmet Ali Aydınlar University ethics committee. Additional informed consent was obtained from all patients for which identifying information is included in this article. One hundred women (age range 18-66 years; mean 42.02±11.423 years) who underwent screening ABUS examination between July and August 2017 were reviewed retrospectively.

We excluded twelve patients who were already diagnosed with breast cancer and had a breast surgery history, skin disorders, inflammatory conditions of the breast, breastfeeding woman and pregnancy. Patients with larger breasts which needed more than three positions were also excluded from the study. ABUS images of one hundred women were evaluated by two readers.

Automated Three-Dimensional (3D) Breast Ultrasound (ABUS)

Automated breast ultrasound studies were performed using the ABUS (InveniaTM ABUS, GE Healthcare) scanner by two well-trained radiology technicians with one month of experience on automatic ultrasound. The examination was performed in the supine position with the ipsilateral arm above the head. A hypoallergenic lotion and a disposable membrane were used to aid an acoustic coupling. Each breast was examined in three different positions; i) anteroposterior (AP), ii) lateral (LAT) including the pectoral muscle and iii) medial (MED). A nipple marker was placed on the coronal view to locate the nipple position for accurate location in each position.

Automated breast ultrasound system acquires 15.4 cm x17.0 cm area with the volume from the skin to the chest wall up to 5 cm deep. The frequency of transducer varied between 6-15 MHz.

Each study included bilateral anteroposterior, medial, and upper-outer quadrant positions.

For the lateral position, the breast tissue was pushed from axilla towards the sternum and covered the upper outer breast. For the medial position, the breast tissue was pushed from sternum toward the axilla, covering the inner inferior part of the breast. Minor compression was performed to the breast to avoid breast movement and obtain better view of the volume.

All positions included the nipple as a landmark. The scanning time for the sweeping of the probe the whole volume of interest was one minute per view.

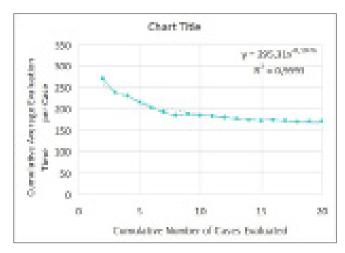
Data were sent from the ABUS to the dedicated workstation. Multiplanar compounded images in three planes (coronal, sagittal and axial reconstructions) were reviewed.

Data Evaluation

Each study was examined sequentially by a breast radiologist who has more than 20 years of experience in breast radiology, three months of experience in ABUS reading prior to the study (senior radiologist) and third year resident (junior radiologist) who has 6 months of experience in breast radiology, one-month experience in ABUS reading prior to the study blinded to each other's results. Junior radiologist had a training for ABUS for one month prior to the study. Two radiologists participated in ABUS training via online webinars. A standard review protocol was used by both readers, which included, evaluation of coronal and transverse planes of each volume. Each plane was evaluated in the same order. The cases were evaluated in the same sequence. The reading environment was same.

Patient's age, reading time of 2 radiologists and American College of Radiology Breast Imaging Reporting and Data System (BIRADS) Atlas category for each patient were noted. The results were classified as: BIRADS 0 (incomplete), BIRADS 1 (negative), BIRADS 2 (benign findings).

Statistical Analysis


Data were analyzed with Statistical Package for the Social Sciences version 24.0 (IBM Corp.; Armonk, NY, USA). Spearman' correlation, Wilcoxon Signed Ranks Test and Kruskal-Wallis Test were recorded. P value <0.05 was considered for statistical significance for all tests. Wilcoxon Signed Ranks Test was used for significant difference between the mean time of two radiologists. Spearman' correlation was used for significant difference regarding the decrease in the reading time throughout study with the increase of number of cases read by the breast radiologist. Kruskal-Wallis Test and Spearman' correlation were used for correlation between BI-RADS category and reading time for both the breast.

Results

The average time for evaluating the ABUS data for the senior radiologist was 223.36 ± 84.334 seconds (min 118 max 500 seconds). The average time for junior radiologist was 269.48 ± 82.895 seconds (min 150 max 628 seconds) as detailed on Table 1. There was a significant difference between the mean time of two radiologists (p=0.00001). There was a significant difference regarding the decrease in the interpretation time throughout study with the increase of number of cases read by the breast radiologist (p<0.05); but not with the resident radiologist (p=0.687) (Figure 1). The reading time of the breast radiologist decreased throughout the study (Figure 2).

Table 1. The average time for evaluating the ABUS data for the senior and junior radiologist

Descriptive Statistics	Minimum	Maximum	Mean	Std. Deviation
Age	16	66	42.02	11.423
Senior radiologis (seconds)	t 118	500	223.36	84.334
Junior radiologis (seconds)	t 150	628	269.48	82.895
Average time (seconds)	139.5	458.5	246.424	67.0528

Figure 1. The reading time of the senior breast radiologist decreased throughout the study

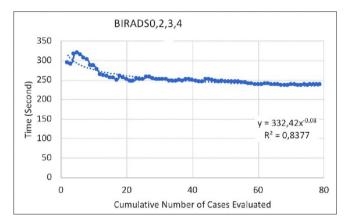


Figure 2. Learning curve of breast radiologist

We classified cases according to American College of Radiology BIRADS Atlas category; including BI-RADS category I in 20 patients (20%), BI-RADS category II in 65 patients (65%), BI-RADS category 0 in 15 patients (15%). All BI-RADS category 0 patients were examined with second look HHUS. Two of these changed to BI-RADS 2, seven to BI-RADS 3 and six to BI-RADS 4. One of six BI-RADS 4 cases proved to be an invasive carcinoma with a diameter of 6 mm which was detected by both readers. There was a correlation between BI-RADS category and reading time for both the breast radiologists and the resident (p=0.002, p=0.00043 respectively) indicating that patients who had findings resulted with longer reading times (Table 2). This finding was evident for the resident compared to the findings of the breast radiologist taking the BIRADS category into consideration.

Discussion and Conclusion

This study highlights the interpretation time of 3D ABUS by two radiologists with different experiences. Junior radiologist showed to be inferior to senior radiologist, particularly in the average time and learning curve. Our study showed that inexperienced radiologist's learning curve and the reading time is longer, however the mean time difference is 46 seconds.

Average time for 2 radiologists in 100 cases was 246.424±67.0528 (min 139.5, max 458.5) seconds. We observed that ABUS reading is fast and shortens during the time span of learning curve. This interpreta-

Table 2. Kruskal Wallis Test, correlation between BI-RADS category and reading time

Ranks		
BIRADS N		Mean Rank
Reding Time for Breast Radiologist	0	66.50
	1	27.48
	2	54.27
	3	56.64
	4	64.57
Reading Time for Breast Radiologist	0	62.75
	1	36.00
	2	47.59
	3	74.07
	4	84.00
Mean Time (second)	0	65.25
	1	28.05
	2	50.89
	3	69.64
	4	80.71

tion time is agreeable when compared to hand-held bilateral screening ultrasound examination which is reported to take an approximately 19 min (23) particularly in practices where the radiologist performs. We believe that ABUS can be a good alternative as a less time-consuming examination for a radiologist in breast screening programs particularly in centers with high patient flow.

We observed a significant reading time difference between BI-RADS 1 and other BIRADS categories (BI-RADS 0,2). It would take less time to read a completely normal exam (BIRADS 1) than an abnormal exam (BIRADS 0 and 2).

Automated breast ultrasound is more promising for breast screening purposes where majority of women are BI-RADS category 1. Thus, recall is needed for category 0 lesions which will be higher in diagnostic studies but will be low in screening. Many studies have documented that the ABUS technique is independent of an operator, has standardized views, is faster to acquire images. ABUS requires less training than HHUS. Total examination time is about 10-15 minutes by a trained sonographer (7, 8, 24-27). The interpretation time of ABUS varies between 2,9 and 9 minutes (24-26). The reason of this variability may be the differences in experiences, presence of abnormalities, and to the filled reports or protocols (25, 26). Our study showed that readers with different experiences can perform interpretation of the images in comparable durations. However, a recent study demonstrated an average ABUS interpretation time of less than 3 minutes with 3 different experienced readers. Their study included patients with ACR BI-RADS 4 breast density classifications of C or D which in line with our findings (28).

To assess or compare radiologists' performance in the detection of breast cancer with 3D ABUS were not part of this study. However, in another related study, the addition of ABUS to screening mammography has been found to increase in cancer detection in line with our findings (29).

Our study has several limitations: First, the number of study participants was relatively limited. Second, it would have been more objective to compare reading time with varied experienced more than 2 radiologists. A multicenter study with several readers may help to show the variability of reading times. Third, this study was a retrospective study and the clinical outcome was not included in the analysis.

In conclusion, ABUS reading time may differ according to the experience of the user; however, the times of an experienced and nonexperienced users are comparable.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of Acıbadem Mehmet Ali Aydınlar University (2018-2/9).

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - A.A., E.A.; Design - A.A., E.A.; Supervision - A.A., E.A.; Resources - A.A., E.A.; Materials - A.A., E.A.; Data Collection and/or Processing - A.A., E.A.; Analysis and/or Interpretation - A.A., E.A., G.E.; Literature Search - A.A., E.A.; Writing Manuscript - A.A., E.A.; Critical Review - A.A., E.A.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Tabár L, Fagerberg CJ, Gad A, Baldetorp L, Holmberg LH, Gröntoft O, Ljungquist U, Lundström B, Månson JC, Eklund G. Reduction in mortality from breast cancer after mass screening with mammography: randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet 1985; 325: 829-832. (PMID: 2858707) [CrossRef]
- Kolb M, Lichy J, Newhouse H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 2002; 225: 165-175. (PMID:12355001) [CrossRef]
- Kim YW, Kim SK, Youn HJ, Choi EJ, Jung SH. The clinical utility of automated breast volume scanner: a pilot study of 139 cases. J Breast cancer 2013; 16: 329-334. (PMID: 24155763) [CrossRef]
- Shin HJ, Kim HH, Cha JH. Current status of automated breast ultrasonography. Ultrasonography 2015; 34: 165. (PMID: 25971900) [CrossRef]
- Zhang Q, Hu B, Hu B, Li WB. Detection of breast lesions using an automated breast volume scanner system. J Int Med Res 2012; 40: 300-306. (PMID: 22429369) [CrossRef]
- Berg WA, Blume JD, Cormack JB, Mendelson EB. Operator dependence of physician-performed whole-breast US: lesion detection and characterization. Radiology 2006; 241: 355-365. (PMID: 17057064) [CrossRef]
- Lin X, Wang J, Han F, Fu J, Li A. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2012; 81: 873-878. (PMID: 21420814) [CrossRef]
- Vourtsis A, Kachulis A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1,886 women. Eur Radiol 2018; 28: 592-601. (PMID: 28828640) [CrossRef]

- Wojcinski S, Gyapong S, Farrokh A, Soergel P, Hillemanns P, Degenhardt F. Diagnostic performance and inter-observer concordance in lesion detection with the automated breast volume scanner (ABVS). BMC Med Imaging 2013; 13: 36. (PMID: 24219312) [CrossRef]
- Maturo VG, Zusmer NR, Gilson AJ, Smoak WM, Janowitz WR, Bear BE, Goddard J, Dick DE. Ultrasound of the whole breast utilizing a dedicated automated breast scanner. Radiology 1980; 137: 457-463. (PMID: 6254110) [CrossRef]
- Choi JJ, Kim SH, Kang BJ, Song BJ. Detectability and usefulness of automated whole breast ultrasound in patients with suspicious microcalcifications on mammography: comparison with handheld breast ultrasound. J Breast cancer 2016; 19: 429-437. (PMID: 28053632) [CrossRef]
- 12. Kim SH, Kang BJ, Choi BG, Choi JJ, Lee JH, Song BJ, Choe BJ, Park S, Kim H. Radiologists' performance for detecting lesions and the interobserver variability of automated whole breast ultrasound. Korean J Radiol 2013; 14: 154-163. (PMID: 23482698) [CrossRef]
- Shin HJ, Kim HH, Cha JH, Park JH, Lee KE, Kim JH. Automated ultrasound of the breast for diagnosis: interobserver agreement on lesion detection and characterization. AJR Am J Roentgenol 2011; 197: 747-754. (PMID: 21862820) [CrossRef]
- Wang HY, Jiang YX, Zhu QL, Zhang J, Dai Q, Liu H, Lai XJ, Sun Q. Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur J Radiol 2012; 81: 3190-3200. (PMID: 22386134) [CrossRef]
- Kotsianos-Hermle D, Hiltawsky KM, Wirth S, Fischer T, Friese K, Reiser M. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009; 71: 109-115. (PMID: 18468829) [CrossRef]
- An YY, Kim SH, Kang BJ. The image quality and lesion characterization of breast using automated whole-breast ultrasound: a comparison with handheld ultrasound. Eur J Radiol 2015; 84: 1232-1235. (PMID: 25975896) [CrossRef]
- Zheng FY, Yan LX, Huang BJ, Xia HS, Wang X, Lu Q, et al. Comparison of retraction phenomenon and BI-RADS-US descriptors in differentiating benign and malignant breast masses using an automated breast volume scanner. Eur J Radiol 2015; 84: 2123-2129. (PMID: 26272029) [CrossRef]
- 18. Mundinger A. 3D supine automated ultrasound (saus, abus, abvs) for supplemental screening women with dense breasts. Eur J Breast Health 2016; 12: 52. (PMID: 28331733) [CrossRef]
- Berg WA, Bandos AI, Mendelson EB, Lehrer D, Jong RA, Pisano ED. Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. J Natl Cancer Inst 2015; 108: djv367. (PMID: 26712110)
- Scheel JR, Lee JM, Sprague BL, Lee CI, Lehman CD. Screening ultrasound as an adjunct to mammography in women with mammographically dense breasts. Am J Obstet Gynecol 2015; 212: 9-17. (PMID: 24959654) [CrossRef]
- Merry GM, Mendelson EB. Update on screening breast ultrasonography. Radiol Clin North Am 2014; 52: 527-537. (PMID: 24792654) [CrossRef]
- Kelly KM, Dean J, Lee SJ, Comulada WS. Breast cancer detection: radiologists' performance using mammography with and without automated whole-breast ultrasound. Eur J Radiol 2010; 20: 2557-2564. (PMID: 20632009) [CrossRef]
- Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Böhm-Vélez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM, Marques HS, Boparai K. Combined Screening with Ultrasound and mammography compared to mammography alone in women at elevated risk of breast cancer: results of the first-year screen in ACRIN 6666. JAMA 2008; 299: 2151-2163. (PMID: 18477782) [CrossRef]
- Brem RF, Tabár L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE, Lander MR, Lapidus RL, Peterson MK, Rapelyea JA, Roux S, Schilling KJ, Shah BA, Torrente J, Wynn RT, Miller DP. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology 2014; 274: 663-673. (PMID: 25329763) [CrossRef]

- 25. Skaane P, Gullien R, Eben EB, Sandhaug M, Schulz-Wendtland R, Stoeblen F. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study. Acta Radiol 2015; 56: 404-412. (PMID: 24682405) [CrossRef]
- Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol 2016; 85: 1554-1563. (PMID: 27501888) [CrossRef]
- 27. Tozaki M, Isobe S, Yamaguchi M, Ogawa Y, Kohara M, Joo C, Fukuma E. Optimal scanning technique to cover the whole breast using an auto-

- mated breast volume scanner. Jpn J Radiol 2010; 28: 325-328. (PMID: 20512554) [CrossRef]
- Huppe AI, Inciardi MF, Redick M, Carroll M, Buckley J, Hill JD, Gatewood JB. Automated Breast Ultrasound Interpretation Times: A Reader Performance Study. Acad Radiol 2018; 25: 1577-1581. (PMID: 29661602) [CrossRef]
- Giger ML, Inciardi MF, Edwards A, Papaioannou J, Drukker K, Jiang Y, Brem R, Brown JB. Automated breast ultrasound in breast cancer screening of women with dense breasts: reader study of mammography-negative and mammography-positive cancers. AJR Am J Roentgenol 2016; 206: 1341-1350. (PMID: 27043979) [CrossRef]

The Effect of Mini-Latissimus Dorsi Flap (MLDF) Reconstruction on Shoulder Function in Breast Cancer Patients

Tomris Duymaz¹ (10), Zeynep Erdoğan İyigün² (10), Ahmet Serkan İlgün³ (10), Çetin Ordu⁴ (10), Muhammed Üçüncü⁵ (10), Gül Alço⁶ (10), Alper Öztürk⁷ (10), Filiz Elbüken⁸ (10), Fatma Aktepe⁹ (10), Vahit Özmen¹⁰ (10)

ARSTRACT

Objective: The aim of this study is to investigate the effect of mini latissimus dorsi flap (MLDF) reconstruction on ipsilateral shoulder functions.

Materials and Methods: Those included in the study are the patients aged between 23 and 73, who were operated with the diagnosis of early breast cancer (cT1-3)N0). The first group includes the patients who had sentinel lymph node biopsy (SLNB) with partial mastectomy. The second group consists of the patients who had axillary lymph nodule dissection (ALND) with partial mastectomy. The third group includes the patients who had SLNB and MLDF with partial mastectomy. The fourth group includes the patients who had ALND and MLDF with partial mastectomy. Patients' Quick Disabilities of the Arm, Shoulder and Hand (Q-DASH) score work model point were recorded.

Results: 174 patients were included in this study. According to Q-DASH score, no functional change was detected in 69.5% of the patients, whereas slight functional loss was identified in 23.6%, moderate functional loss in 5.7%, severe functional loss 1.1%. In the comparison of Q-DASH scores in surgery groups, while these four groups were being analyzed, a significant difference was determined (p=0.007). When dual analyses were made, it was also established that the difference resulted from the group to which ALND and MLDF were applied together.

Conclusion: We conclude that MLDF application for reconstruction purposes after breast surgery has a negative impact on shoulder functions of the patients who had both of partial mastectomy and ALND.

Keywords: Breast reconstruction, latissimus dorsi flap, shoulder functions

Cite this article as: Duymaz T, Erdoğan İyigün Z, İlgün AS, Ordu Ç, Üçüncü M, Alço G, Öztürk A, Elbüken F, Aktepe F, Özmen V. The Effect of Mini-Latissimus Dorsi Flap (MLDF) Reconstruction on Shoulder Function in Breast Cancer Patients. Eur J Breast Health 2019; 15(3): 158-162.

Introduction

Breast cancer is the most common cancer type among women and can lead to death (1). According to World Health Organization data, the frequency and mortality of breast cancer has increased substantially in developing countries (2, 3). Although the breast cancer incidence has increased, the general survival rate at 5 years for Stage I breast cancer has reached 100% and for Stage II has reached 93% due to early disease recognition and advanced treatment methods (4). Increase in length of life has helped to provide better cosmetic appearance of the breast and to have an increase in breast-conserving surgery. As a result, the number of studies dedicated to reducing the morbidity of surgical treatment is increasing (5-7). Treatment for early stage breast cancer is usually initiated by surgical intervention and it is necessary to fill the cavity occurring after partial mastectomy (8-10). There are two different fundamental approaches available regarding breast reconstruction after breast cancer. The first approach refers to volume replacement procedures, which combine resection with immediate reconstruction of the defect using autologous tissue (local fasciocutaneous flaps and latissimus dorsi mini-flaps) (11) and the second approach is repre-

¹Department of Physiotherapy and Rehabilitation, İstanbul Bilgi University School of Health Sciences, İstanbul, Turkey

²Department of Physiotherapy and Rehabilitation, İstanbul Bilim University School of Medicine, İstanbul, Turkey

³Department of General Surgery, Taksim Training and Research Hospital, İstanbul, Turkey

⁴Department of Medical Oncology, İstanbul Bilim University School of Medicine, İstanbul, Turkey

⁵Centre of Breast Health, İstanbul Florence Nightingale Hospital, İstanbul, Turkey

⁶Department of Radiation Oncology, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey

⁷Department of General Surgery, Biruni University School of Medicine, İstanbul, Turkey

⁸Departmment of Radiology, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey

Department of Pathology, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey

¹⁰Department of General Surgery, İstanbul University İstanbul School of Medicine, İstanbul, Turkey

sented by volume-displacement procedures, which combine resection with a variety of different breast-reduction and reshaping techniques, according to the location of the tumor (12-15). This method is often applied just after mastectomy and its positive psychological effect has been demonstrated (16, 17). In spite of positive effects, complications of latissimus dorsi flap (LDF) reconstructions cannot be ignored. These complications are seroma formation, wound infection, flap necrosis and shoulder dysfunction (18). For decreasing these complications, a part of latissimus dorsi muscle should be used that called mini-latissimus dorsi flap (MLDF), which is less invasive then LDF.

Latissimus dorsi flap effects shoulder mobility and upper extremity daily living activities negatively due the decreasing stability of shoulder joint however adequate information cannot find on effects of MLDF to shoulder functions in our literature search. Because of this reason he aim of this study was to investigate the effect of MLDF in partial mastectomy on upper extremity functionality.

Materials and Methods

174 patients who were treated with breast-conserving surgery (BCS) due to breast cancer at the Istanbul Florence Nightingale Breast Health Center were included in this study. A cross-sectional descriptive study was planned. The necessary sample size was determined by including all patients who fulfilled the inclusion criteria who applied to our clinic between 2014-2017. Approval was obtained from the Istanbul Science University Ethics Committee before the study. Written informed consent was obtained from all patients.

Inclusion criteria for the patient group was set as follows: being over 18 years old, having BCS with a diagnosis of stage I or stage II breast cancer, having received radiotherapy and chemotherapy, having no neurologic, orthopedic or rheumatic diseases affecting upper extremity function, and not having any disability related to the upper extremities before the surgery. Exclusion criteria were rejecting to participate in the study, having mastectomy, having operation on the same breast previously and/or having applied LDF, having treatment with a muscle relaxant or having treatment forming a neuromuscular block, not having radiotherapy or chemotherapy, having disability of the shoulder joint before the operation and having a disease affecting shoulder and upper extremity functions.

Patients were divided into 4 groups according to the surgical procedures applied. These groups were: I. Group: patients having sentinel lymph node biopsy (SLNB) with partial mastectomy (n=50), II. Group: patients having axillary lymph node dissection (ALND) with partial mastectomy (n=37), III. Group: patients having partial mastectomy + SLNB + LDF (n=50), IV. Group: patients having partial mastectomy + ALND + LDF (n=37). After having recorded the demographic information of the patients, joint movements and examinations were performed to complete the quick disabilities of the arm, shoulder and hand (Q-DASH) form for functional assessment.

In the MLDF surgical reconstruction procedure, the tumor is removed from the breast within clean surgical margins and the tumor bed is marked with clips. The patient is placed in the semi-lateral decubitus position, and the incision performed for SLNB or ALND is slightly extended laterally in order to find the lateral edge of the latissimus dorsi muscle. This muscle is drawn and separated from the chest wall, and the point where thoracodorsal vessels enter the muscle is found. Since the blood supply of the flap is from this vascular bundle, care-

ful attention is required not to injure it. The latissimus dorsi muscle is separated from teres major and minor muscles superficially. To fill the space occurring in the breast tissue, the lower part of the tissue excised from axillary apex is measured and 5 cm is added on to it. This 5-cm-excess, which is added in order to have the necessary amount of muscle, is used to give a better shape to the breast. It forms premuscular fascia in the anterior, lumbosacral fascia in dorsal and rib arcuate limit in inferior. This area becomes free from muscle structures with the help of bipolar scissor and electrocautery. The muscle is prepared from the inferior according to the amount of muscle needed. The superior part of the muscle is separated from the humerus adherence point. During this process, utmost care is taken not to rotate the muscles in order to prevent vascularity. Muscle tissue is transported through the subcutaneous tunnel opening towards the excision cavity from the axillary region. Muscle tissue is here fixed to the pectoralis muscle and then shaped.

Upper extremity functional assessment was carried out with Q-DASH. Q-DASH is a regional result criterion that was developed for upper extremity musculoskeletal system disease. It evaluates all upper extremity functions, is filled out optionally and includes sport and musician modules. It contains eleven questions. To calculate the score of the criterion that can be used instead of Q-DASH, at least 10 questions out of 11 must be answered. Each question is graded on a 5-point- Likert scale. The total score of the questionnaire is calculated in such a way that the total points of the marked questions is divided by the number of questions marked, and then 1 is subtracted from the result, and the result multiplied by 25. Point total between 0-20 indicates normal, 21-40 indicates slight, 41-60 indicates moderate, and 61-80 indicates severe disability. The business model investigation survey of Q-DASH contains 4 questions intended for the assessment of problems that the patient has with his/her arms while working. Difficulty level is scored between 1 and 5. The total score of the questions is divided by 4, then 1 is subtracted from the result and then this result is multiplied by 25 (19). The validity and reliability of this scale was confirmed by Düger et al. (20).

The reasons why we have selected the Q-DASH survey for our study are that the survey's Turkish cultural adaptation has been done, that measurement features have been tested, that it is a survey especially for upper extremities and that it gives an idea about whole upper extremity functionality.

Statistical Package for the Social Sciences version 22.0 (IBM Corp., Armonk, NY, USA) package has been used for statistical analysis. In descriptive statistics of the data, average, standard deviation, minimum and maximum values, median, rate and frequency values have been used. Distribution analysis of the variables has been controlled and tested by Kolmogorov- Smirnov test. Mann-Whitney U test and Kruskal Wallis test have been used for quantitative data analysis. For qualitative data analysis, Chi-Square test has been used, however, when it did not give results, Fisher test has been used. In correlation analyses, Pearson and Spearman tests have been used. Significance level was accepted as p<0.05.

Results

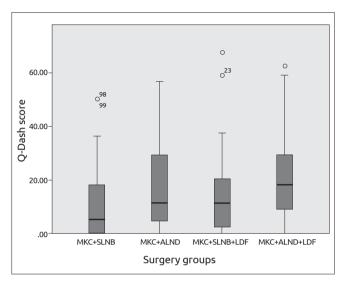
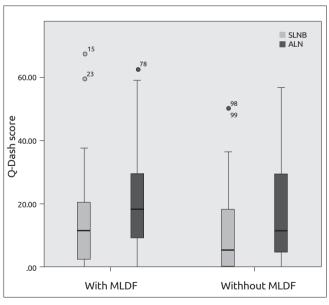

174 patients were involved in this study. The mean age of the patients was 50.32 ± 10.18 , the mean body mass index (BMI) was 26.7 ± 5.8 and the median value of the time passed after the surgery was 24 (3-108) months. 57.4% of the patients had surgery on the dominant side. The distribution of patient demographic data by surgery groups is provided in Table 1.

Table 1. Demographic data between groups


	MCS+SLNB (n=50)	MCS+ALND (n=37)	MCS+MLDF+SLNB (n=51)	MCS+MLDF+ALND (n=37)	р
BMI (kg/m²)	25.5 (18.5-37)	28.4 (18.6-57.7)	24 (19.1-33)	25 (20-38.3)	0.003
Age (year)	51.5 (30-71)	51 (23-73)	48 (33-70)	47 (35-72)	0.80
Elapsed time after operation (month)	24 (3-128)	29 (5-108)	21 (3-108)	34 (4-78)	0.248

Mann-Whitney U Test

MCS: Mastectomy; SLNB: Sentinel lymph node biopsy; ALND: Axillary lymph node dissection; MLDF: Mini Latissimus dorsi flap; BMI: Body mass index

Graphic 1. Comparison of between surgery groups and Q-Dash scores

Graphic 2. Comparison of between reconstruction performed with/without MLDF and Q-Dash

According to Q-DASH score, no functional change was observed in 69.5% of the patients. On the other hand, slight functional loss, moderate functional loss and severe functional loss were detected in 23.6%, 5.7% and 1.1% of the patients, respectively. It was determined that having surgery on the dominant side did not have any impact on the arm functions (p=0.567).

Having compared Q-DASH scores in the surgery groups, a significant difference was established across the four groups analyzed (p=0.007) (Graphic 1). Dual analyses also revealed a difference resulting from the group in which ALND and MLDF were applied together. This significant difference disappeared once the three groups were reassessed after excluding those that were subjected to concomitant application of ALND and MLDF (p=0.22).

Although the findings suggested that reconstruction performed with MLDF did not have any statistically significant impact (p=0.17, p=0.12) on upper extremity functions when patients were classified as SLNB and ALND by lymph node surgery, Q-DASH scores were found to be relatively higher in patients to whom MLDF was applied than those who did not have MLDF application in both groups (Graphic 2).

In the comparison of Q-DASH business model scores of the patients in whole groups, no significant difference was determined (p=0.11).

In the evaluation of questions one by one in the groups, a significant breakdown (p=0.032, p=0.048) was found only in carrying a bag and opening a new or tight jar cap functions, whereas no significant difference was identified for the other nine questions.

No significant correlation was found in the comparison of functionality questions and the time passed after surgery (p=0.903).

Discussion and Conclusion

Reconstruction with mini-latissimus dorsi after partial mastectomy has begun to be implemented as one or two-stage procedures from the 1990's (21-24). Especially for patients who have a small breast and a large tumor or who are diagnosed with multifocal breast cancer, MLDF after partial mastectomy has been implemented in our clinic since 2010 and this has increased our breast protective surgery rate by 12.5% (3, 10, 25-27).

According to Spears et al. (28) article published in 2005, concerning stabilization and power of the shoulder joint, joint range of motion and functionality decrease after latissimus dorsi muscle transfer within the first 4 weeks after the implementation of LDF, there was a 30% decrease in shoulder function. These restraints affect daily life and free time activities negatively for the first 3 months after surgery. General functionality will return to the patients 6-12 months after surgery (28). Glassey et al. (29) assessed preoperative, postoperative, 6th week, 6th month and 1st year shoulder joint movement, power, pain and functionality levels of 22 patients who had LDF. In the results they obtained, they found that the assessments covering the period up to 6 months were poor, however after the first year, shoulder function recovered to a significant level (29). Button et al. (19) evaluated

preoperative, postoperative, 6th week, 3rd, 6th, 12th, 18th, 24th and 36th month shoulder functions of 58 patients who had LDF. Although they saw that Q-DASH scores decreased in each subsequent period, they reported that functional disability continued even in the long term, and that the patients receiving physiotherapy had better scores. They also reported that patients returned to preoperative values completely after 3 years (19). The relation of shoulder functions with the time given in these studies was not determined in our study. The reason for this is that while the LDF method has been used in the mentioned studies, we have used the MLDF method, which is less invasive.

Koh and Morrison (30) assessed latissimus dorsimuscle-skin reconstruction results in various patient groups (breast, upper extremity, head and neck patients) with the Q-DASH investigation form. 33% of the patients had changed their lifestyles because of dysfunction, and a clear majority of the patients stated that they had difficulty in overhead activities. It has been reported that this decrease in terms of functionality became clear especially between 6-12 months after the surgery (30). In our study, a serious functional loss in the upper extremity was found in 1.1% of the patients. In follow-ups 1 year after the operation for 22 patients diagnosed with breast cancer who had latissimus dorsi muscle-skin reconstruction, Glassey et al. (29) demonstrated that those who were operated on the dominant side recovered functionality over a longer time without having a decrease in muscle force or joint range of motion (29). In a prospective study, Forthomme at al. (31) evaluated 20 patients with whom they applied unilateral mastectomy and LDF reconstruction at the pre-operation, and post-operation 3rd and 6th months, and they reported that there was a restriction in overhead movements, especially among patients who were operated on the dominant side, and that there was no decrease in fine motor skills (31). In our study, we determined that having the operation on the dominant side had no impact on functionality.

Gosselink et al. (32) stated that 27% of 76 women with breast cancer who had ALND had continuous upper extremity functional disorders for 3 months after the surgery. In their studies in which shoulder functions of women to whom ALND was applied and only SLNB or no surgery were compared, Mansel et al. (33) determined that shoulder functions of women to whom ALND was applied were worse at the post-op 6th and 12th months. According to the results of our study, for all patients to whom BCS was applied, surgical interventions performed on axilla (SLNB/ALND) and MLDF affected shoulder functions and functionality in daily life activities adversely for up to one year. This exposure rate changed based on the type of surgical intervention performed. The gradation of surgical interventions affecting the upper extremity functions from minimum to maximum were as follows: Partial mastectomy + SLNB, Partial mastectomy + ALND, Partial mastectomy + SLNB + MLDF and Partial mastectomy + ALND + MLDF.

In conclusion, MLDF was applied to patients having a high tumor/breast ratio and diagnosed with multifocal/multicentric breast cancer as an alternative to reconstruction with subcutaneous mastectomy and prosthesis. Although with this method, which uses less latissimus dorsi muscle than latissimus dorsi muscle skin flap, led to less upper extremity functional disorders, the use of MLDF may cause upper extremity functional disorders in patients who require ALND.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of Istanbul Science University (04.11.2014/25-17).

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - T.D., Z.E.I.; Design - Z.E.I., A.S.I.; Supervision - V.O., F.A.; Resources - V.O., Z.E.I., A.S.I., C.O., A.O.; Materials - Z.E.I., A.O.; Data Collection and/or Processing - T.D., Z.E.I.; Analysis and/or Interpretation - A.S.I., F.E.; Literature Search - T.D., M.U.; Writing Manuscript - T.D., C.O., Z.E.I.; Critical Review - V.O., F.A.; Other - F.E., G.A.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol Biomarkers Prev 2015; 24: 1495-1506. (PMID: 26359465) [CrossRef]
- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386. (PMID: 25220842) [CrossRef]
- Özmen V. Breast Cancer in Turkey: Clinical and Histopathological Characteristics (Analysis of 13.240 Patients). J Breast Health 2014; 10: 98-105. (PMID: 28331652) [CrossRef]
- Cho J, Jung SY, Lee JE, Shim EJ, Kim NH, Kim Z, Sohn G, Youn HJ, Kim KS, Kim H, Lee JW, Lee MH. A review of breast cancer survivorship issues from survivors perspectives. J Breast Cancer 2014; 17: 189-199. (PMID: 25320616) [CrossRef]
- Ditsch N, Bauerfeind I, Vodermaier A, Tripp C, Löhrs B, Toth B, Himsl I, Graeser M, Harbeck N, Lenhard M. A retrospective investigation of women's experience with breast reconstruction after mastectomy. Arch Gynecol Obstet 2013; 287: 555-561. (PMID: 23090185) [CrossRef]
- Cubasch H, Dickens C, Joffe M, Duarte R, Murugan N, Tsai Chih M, Moodley K, Sharma V, Ayeni O, Jacobson JS, Neugut AI, McCormack V, Ruff P. Breast cancer survival in Soweto, Johannesburg, South Africa: A receptor-defined cohort of women diagnosed from 2009 to 11. Cancer Epidemiol 2018; 52: 120-127. (PMID: 29306221) [CrossRef]
- Senkus E, Kyriakides S, Penault-Llorca F, Poortmans P, Thompson A, Zackrisson S, Cardoso F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24: 7-23. (PMID: 23970019) [CrossRef]
- Thiruchelvam PTR, McNeill F, Jallali N, Harris P, Hogben K. Post-mastectomy breast reconstruction. BMJ 2013; 347: 5903. (PMID: 24128977) [CrossRef]
- Alço G, Igdem S, Okkan S, Dincer M, Sarsenov D, Ilgun AS, Agacayak F, Elbüken F, Ercan T, Selamoglu D, Ozmen V. Replacement of the tumor bed following oncoplastic breast conserving surgery with immediate latissimus dorsi mini flap. Mol Clin Oncol 2016; 5: 365-371. (PMID: 27699027) [CrossRef]
- Noguchi M, Saito Y, Mizukami Y, Nonomura A, Ohta N, Koyasaki N, Taniya T, Miyazaki I. Breast deformity, its correction and assessment of breast-conserving surgery. Breast Cancer Res Treat 1991; 18: 111-118. (PMID: 1912608) [CrossRef]
- 11. Nos C, Fitoussi A, Bourgeois D, Fourquet A, Salmon RJ, Klough KB. Conservative treatment of lower pole breast cancers by bilateral mammoplasty and radiotherapy. Eur J Surg Oncol 1998; 24: 508-514. (PMID: 9870725) [CrossRef]
- Spector DJ, Mayer DK, Knafi K, Pusic A. Women's recovery experiences after breast cancer reconstruction surgery. J Psychosoc Oncol 2011; 29: 664-676. (PMID: 22035539) [CrossRef]

- Winters ZE, Afzal M, Balta V, Freeman J, Llewellyn-Bennett R, Rayter Z, Cook J, Greenwood R, King MT. Prospective Trial Management Group. Patientreported outcomes and their predictors at 2- and 3-year follow-up after immediate latissimus dorsi breast reconstruction and adjuvant treatment. Br J Surg 2016; 103: 524-536. (PMID: 26924354) [CrossRef]
- Hamdi M, Decorte T, Demuynck M, Defrene B, Fredrickx A, Van Maele G, De Pypere H, Van Landuyt K, Blondeel P, Vanderstraeten G, Monstrey S. Shoulder function after harvesting a thoracodorsal artery perforator flap. Plast Reconstr Surg 2008; 122: 1111-1117. (PMID: 18827644)
- Szychta P, Butterworth M, Dixon M, Kulkami D, Raine C, Stewart K. Breast reconstruction with the denervated latissimus dorsi musculocutaneous flap. Breast 2013; 22: 667-672. (PMID: 23374963) [CrossRef]
- Tomita K, Yano K, Nishibayashi A, Fukai M, Miyasaka M, Hosokawa K. The role of latissimus dorsi myocutaneous flaps in secondary breast reconstruction after breast-conserving surgery. Eplasty 2013; 13: 206-214. (PMID: 23837111)
- Bhatt CR, Prajapati B, Patil DS, Patel VD, Singh BGP, Mehta CD. Variation in the insertion of the latissimus dorsi and its clinical importance. J Orthop 2013; 10: 25-28. (PMID: 24403744) [CrossRef]
- Itani Y, Hagiwara A, Hashimoto T, Isogai N, Kusuhara H. Preliminary Study of PGA Fabric for Seromas at Latissimus Dorsi Flap Donor Sites. Plast Reconstr Surg Glob Open 2017; 5: e1499. (PMID: 29184727) [CrossRef]
- Button J, Scott J, Taghizadeh R, Weiler-Mithoff E, Hart AM. Shoulder function following autologous LD breast reconstruction. A prospective three year observational study comparing quilting and non-quilting donor site techniques. J Plast Reconstr Aesthet Surg 2010; 63: 1505-1512. (PMID: 19819774) [CrossRef]
- Düger T, Yakut E, Öksüz Ç, Yörükan S, Bilgütay BS, Ayhan Ç, Leblebicioğlu G, Kayıhan H, Kırdı N, Yakut Y, Güler Ç. Reliability and Validity of the Turkish Version of the Disabilities of the Arm, Shoulder and Hand (DASH)Questionnaire. Fizyoter Rehabil 2006; 17: 99-107.
- Sajid MS, Betal D, Akhter N, Rapisarda IF, Bonomi R. Prevention of postoperative seroma-related morbidity by quilting of latissimus dorsi flap donor site: A systematic review. Clin Breast Cancer 2011; 11: 357-363. (PMID: 21705282) [CrossRef]
- Hernanz F, González-Noriega M, Sánchez S, Paz L, Muñoz P, Hermana S. Oncoplastic breast conserving surgery with tailored needle-guided excision. Gland Surg 2017; 6: 698-705. (PMID: 29302488) [CrossRef]

- Dixon JM, Venizelos B, Chan P. Latissimus dorsi miniflap: a new technique for extending breast conservation. Breast 2002; 11: 58-65. (PMID: 14965647) [CrossRef]
- Mele S, Wright D, Paramanathan N, Laws S, Peiris L, Rainsbury R. Longterm effect of oncoplastic breast-conserving surgery using latissimus dorsi miniflaps on mammographic surveillance and the detection of local recurrence. J Plast Reconstr Aesthet Surg 2017; 70: 1203-1209. (PMID: 28734752) [CrossRef]
- Jeevan R, Cromwell DA, Browne JP, Caddy CM, Pereira J, Sheppard C, Greenaway K, van der Meulen JH. Findings of a national comparative audit of mastectomy and breast reconstruction survey in England. J Plast Reconstr Aesthet Surg 2014; 67: 1333-1344. (PMID: 24908545) [CrossRef]
- Smith S. Functional Morbidity Following Latissimus Dorsi Flap Breast Reconstruction. J Adv Pract Oncol 2014; 5: 181-187. (PMID: 25089217) [CrossRef]
- Kim Z, Kang SG, Lee MH, Roh JH, Park JH, Lee J, Kim S, Lim CW, Lee MH. Skin-sparing mastectomy and immediate latissimus dorsi flap reconstruction: A retrospective analysis of the surgical and patientreported outcomes. World J Surg Oncol 2012; 10: 259. (PMID: 23192102) [CrossRef]
- Spear SL, Hess CL. A review of the biomechanical and functional changes in shoulder following transfer of the latissimus dorsi muscles. Plast Reconstr Surg 2005; 115: 2070-2073. (PMID: 15923857) [CrossRef]
- Glassey N, Perks GB, McCulley SJ. A prospective assessment of shoulder morbidity and recovery time scales following latissimus dorsi breast reconstruction. Plast Reconstr Surg 2008; 122: 1334-1340. (PMID: 18971716) [CrossRef]
- Koh CE, Morrison WA. Functional impairment after latissimus dorsi flap. ANZ J Surg 2009; 79: 42-47. (PMID: 19183378) [CrossRef]
- Forthomme B, Heymans O, Jacquemin D, Klinkenberg S, Hoffmann S, Grandjean FX, Crielaard JM, Croisier JL. Shoulder function after latissimus dorsi transfer in breast reconstruction. Clin Physiol Funct Imaging 2010; 30: 406-412. (PMID: 20633032) [CrossRef]
- Gosselink R, Rouffaer L, Vanhelden P, Piot W, Troosters T, Christiaens M. Recovery of upper limb function after axillary dissection. J Surg Oncol 2003; 83: 204-211. (PMID: 12884231) [CrossRef]
- 33. Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM, Yiangou C, Horgan K, Bundred N, Monypenny I, England D, Sibbering M, Abdullah TI, Barr L, Chetty U, Sinnett DH, Fleissig A, Clarke D, Ell PJ. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 2006; 98: 599-609. (PMID: 16670385) [CrossRef]

The Oncotype Dx Assay in ER-Positive, HER2-Negative Breast Cancer Patients: A Real Life Experience from a Single Cancer Center

Stephane Thibodeau¹ D, Ioannis A. Voutsadakis¹⁻³ D

ABSTRACT

Objective: To determine the influence of the Oncotype Dx assay on the treatment of patients with Estrogen Receptor (ER)-positive, Human Epidermal Growth Factor Receptor 2 (HER2)-negative, axillary lymph node-negative or micrometastatic carcinoma of the breast in a single cancer center. In addition, patients with intermediate Oncotype Dx recurrence scores were analyzed to assess the factors influencing therapeutic decisions for adjuvant chemotherapy.

Materials and Methods: Data from medical records of women diagnosed with carcinoma of the breast and qualified for the Oncotype Dx assay were extracted (OncoDx cohort). Patient demographic and cancer characteristics, genomic report, and course of treatment data, including survival outcomes and treatment decision-making, were analyzed. A matched cohort of patients with similar tumor stage and biology (ER-positive, HER2-negative) from the era before the introduction of the Oncotype Dx assay was analyzed for comparison (pre-OncoDx cohort).

Results: Two hundred and one patients were included in the OncoDx cohort and one hundred and sixty patients were included in the pre-OncoDx cohort. Oncotype Dx recurrence score (RS) was low (<11) in fifty-six patients (28%), intermediate (11-25) in one hundred and twenty-three patients (61.5%) and high (>25) in twenty one patients (10.5%). Demographic and cancer clinicopathologic characteristics between OncoDx and pre-OncoDx cohorts were similar. Overall, 10.9% of the patients in the OncoDx cohort received adjuvant chemotherapy, versus 23.8% of the patients in the pre-OncoDx cohort (Fisher exact p=0.003). Fewer patients were recommended adjuvant chemotherapy in the OncoDx era compared to the pre-OncoDx era (17.9% vs 30.6%, respectively, Fisher exact p=0.006). The decision to recommend chemotherapy within the intermediate-risk cohort was influenced by the patient's RS. The mean RS of patients in the intermediate-risk cohort who did not receive chemotherapy was 21.5 while the score of those that received chemotherapy was 24.6 (p=0.000). The series confirmed excellent PFS and OS for both OncoDx and pre-OncoDx cohorts.

Conclusion: This single cancer center analysis confirms the avoidance of chemotherapy in the great majority of patients with early ER-positive, HER2-negative, lymph node-negative or micrometastatic carcinoma of the breast since the introduction of the Oncotype Dx assay. A higher recurrence risk score within the intermediate group may influence the decision for chemotherapy inclusion in the adjuvant treatment plan. A lower PR percentage by IHC and higher grade may predict higher Oncotype Dx scores.

Keywords: Oncotype Dx, breast cancer, recurrence risk, prediction, retrospective

Cite this article as: Thibodeau S, Voutsadakis IA. The Oncotype Dx Assay in ER-Positive, HER2-Negative Breast Cancer Patients: A Real Life Experience from a Single Cancer Center. Eur J Breast Health 2019; 15(3): 163-170.

Introduction

Carcinomas of the breast with the estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative phenotype represent the most common subtype of breast cancer, accounting for 75% of the total breast cancer patient population (1, 2). Many of these patients present with localized and axillary lymph node-negative disease, which would usually suggest a good prognosis (3). Yet, some patients possess a significant risk of disease recurrence. Indeed the ER-positive, HER2-negative subset of breast cancers contains two genomically distinct groups, termed luminal A and luminal B, with the latter having a decreased response to hormonal therapies and a worse prognosis (4). Thus, the underlying genetics of the tumor may be more important in predicting its behavior than a patient's individual characteristics or the overall stage and grade of the malignancy at the time of presentation.

Several new genomic tests, which examine the genetic content of the tumor cells and incorporate the results into a prognostic recurrence risk, have been created and validated (5-9). One of these tests is the Oncotype Dx by Genomic Health Inc. (Redwood City, CA), a twenty-

¹Northern Ontario School of Medicine, Sudbury, Ontario, Canada

²Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada

³Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada

one-gene assay which examines the simultaneous expression of sixteen genes, together with five control genes, by Polymerase Chain Reaction (PCR), in an individual patient's breast cancer tissue, and returns a recurrence risk score (RS) and a percentage risk of distant disease recurrence at ten years if hormonal therapy (tamoxifen) alone is used as systemic therapy in the adjuvant setting (10-12). The test has been validated in ER-positive, HER2-negative, lymph node-negative or micrometastatic patients and allows for predicting which patients would derive minimal or no benefit from adjuvant chemotherapy and may be safely spared from it, thus avoiding toxicity and cost, without compromising outcomes (13).

Our study examined the influence of Oncotype Dx testing in the adjuvant therapy of patients with early ER-positive, HER2-negative breast carcinomas treated at a community cancer program and compares treatment decisions and outcomes of these patients with a cohort of similar patients treated in the same center in the era before the introduction of Oncotype Dx testing. Factors that may affect therapeutic decisions and may predict Oncotype Dx stratification are also discussed.

Materials and Methods

Two hundred and one breast cancer patients who had the Oncotype Dx assay were identified in the database at our cancer center, and their records were retrieved and reviewed. Four hundred and fifty-one patients who were diagnosed at our center with carcinoma of the breast in the period prior to the introduction of the Oncotype Dx assay were also identified. After exclusion of two hundred and ninety-one patients that would not qualify for the Oncotype assay because of more advanced stage or other receptor phenotypes, one hundred and sixty patients with ER-positive, HER2-negative carcinoma of the breast were retained in the pre-OncoDx cohort.

The patients' demographic and tumor characteristics were extracted from medical records. The course of treatment, including decision-making regarding the adjuvant treatment plan, as well as disease recurrence and survival outcomes were recorded. The details of the Oncotype Dx report were also recorded, including distant recurrence risk at ten years and RS, as well as ER, Progesterone Receptor (PR) and HER2 scores.

Group comparisons were performed using the cut-off points according to the TAILORx study (low-risk group RS <11, intermediate group RS 11-25, high-risk group RS >25) (10).

Statistical analysis was performed with the Fisher exact test or the x² test for comparison of ratios, the t-test for comparison of mean differences of continuous variables, and the Log-Rank test for comparison of Kaplan-Meier plots. All p values were considered significant at the level <0.05. Calculations were carried out using online statistical calculators (www.socialstatistics.com and https://merser.shinyapps.io/survival) and using STATA software. The protocol for this research was approved by the Ethics Committee of the institution. As this was a retrospective study, no informed consent was obtained from individual patients.

Results

Comparisons according to TAILORx cut-offs in the OncoDx Cohort

We assessed the OncoDx cohort using the TAILORx study cutoffs. Table 1 shows the characteristics of the three groups of patients clas-

sified as per these cut-offs (low-risk group: RS <11, intermediate-risk group: RS=11-25, high-risk group: RS >25) and compares the highrisk group with the two others combined. According to the TAILORx cutoffs, fifty-six patients (28%) belonged to the low-risk group, 123 patients (61.5%) belonged to the intermediate-risk group, and 21 patients (10.5%) belonged to the high-risk group. The comparison of the high-risk group per the TAILORx cutoff versus the two other groups showed statistically significant differences in grade, and ER and PR staining intensity (Table 1). The difference in PR staining with a cutoff of >20% by immunohistochemistry (IHC) between the low-risk and intermediate-risk cohorts based on the TAILORx cutoffs were statistically significant. 3.6% of patients in the low-risk cohort had ≤20% of PR positivity, while this ratio was 35% in the intermediate-risk cohort (Fisher exact test p=0.000). However, there were no statistically significant associations between the low and intermediate-risk cohorts in mean age at presentation, the percentage of patients above age 65, the percentage of post-menopausal patients, or in the size, histology and node status of the tumors, and in the percentage of patients with ER ≥90% scores or whether HER2 negativity was confirmed by either IHC or Fluorescence in itu hybridization (FISH) (Table 1).

Using the TAILORx cut-offs, eighteen of twenty-one patients (85.7%) in the high-risk cohort were recommended chemotherapy. Three patients were not recommended chemotherapy due to co-morbidities or advanced age, in the context of a RS at the lower margin of high-risk. Twelve of twenty-one patients (57.1%) accepted the recommendation and received adjuvant chemotherapy (Table 2).

The most important function of the Oncotype Dx assay is to help with the chemotherapy decision, and virtually all patients in our study were recommended chemotherapy if they were in the TAILORx high-risk group and their general status allowed. Therefore, an analysis was performed among factors that were statistically significant in the high-risk group comparison with the two other groups to identify an optimal combination of factors predicting membership in the high-risk group. Among the factors with the most significant difference in the comparison between the high-risk group and the two other groups, the combination of grade III and PR staining percentage of ≤20% when both present predicted membership in the high-risk group in eleven of nineteen patients (57.9%). Conversely, presence of none or one of these factors predicted membership in the low or intermediate TAI-LORx groups in one hundred and seventy-one of one hundred and eighty-one patients (94.5%). The addition of ER positivity data did not add to the sensitivity or specificity of the PR/grade index, as a significant majority (96%) of the high-risk cohort had high ER positivity (≥90% of tumor cells).

Therapeutic recommendations and outcomes in the OncoDx Cohort

In our series, no patients with a RS of less than 18 were recommended adjuvant chemotherapy, consistent with the intent of the Oncotype Dx assay. We examined, next, therapeutic recommendations in patients with RS between 18 and 31. In this group, twenty-seven of the sixty patients (45.0%) were recommended adjuvant chemotherapy (Table 3). The decision to recommend chemotherapy within this cohort with intermediate-risk was heavily influenced by the patient's RS (Table 3). Specifically, twenty-three (69.7%) patients were not recommended adjuvant chemotherapy because their RS was considered to confer a recurrence risk similar to the low-risk cohort. In eight patients (24.2%), no specific rationale was noted for not recommending adjuvant chemotherapy. In two patients (6.1%), adjuvant chemotherapy was not recommended due to their significant comorbidities.

Table 1. Demographic and clinicopathologic characteristics of patients in the Oncotype cohort, with low (RS <11), intermediate (RS 11-25), or high (RS >25) risks according to the TAILORx risk category. The two last columns provide comparisons between the low and intermediate risk groups and between low + intermediate risk and high risk groups. The Fisher exact test in grade refers to comparison between combined grades I and II versus grade III. Bolded is statistically significant (p<0.05)

Parameter	Category	Total (n=201)	Low Risk (<11) (n=56)	Intermediate Risk (11-25) (n=123)	High Risk (>25) (n=21)	p (Low+Intermediate vs. High)
AGE	Mean	65.1	66.7	64.5	64.4	0.08 (t)
	≤65	93 (46.3)	24 (42.9)	59 (48.0)	9 (42.9)	0.81 (Fisher)
	>65	108 (53.7)	32 (57.1)	63 (52.0)	12 (57.1)	
MENOPAUSE STATUS	Pre-/peri-	22 (10.9)	4 (7.1)	14 (11.4)	4 (19.0)	0.25 (Fisher)
	Post-	179 (89.1)	52 (92.9)	109 (88.6)	17 (81)	
PRIMARY SIZE	<1 cm	37 (18.4)	12 (21.4)	23 (18.7)	2 (9.5)	0.08 (χ²)
	1-2 cm	116 (57.7)	35 (62.5)	70 (56.9)	10 (47.6)	
	>2 cm	48 (23.9)	9 (16.1)	30 (24.4)	9 (42.9)	
HISTOLOGY	Ductal	139 (69.1)	40 (71.4)	83 (67.5)	16 (76.2)	0.89 (χ²)
	Lobular	26 (12.9)	4 (7.1)	20 (16.3)	2 (9.5)	
	Mixed	20 (10.0)	6 (10.7)	12 (9.8)	2 (9.5)	
	Other	16 (8.0)	6 (10.7)	8 (6.4)	1 (4.8)	
GRADE	1	57 (28.3)	21 (37.5)	35 (28.5)	1 (4.8)	0.000 (χ²)
	II	101 (50.3)	30 (53.6)	66 (53.7)	4 (19.0)	
	III	43 (21.4)	5 (8.9)	22 (17.8)	16 (76.2)	
ER STAINING	<90%	8 (4.0)	1 (1.8)	2 (1.6)	5 (25.0)	0.000 (Fisher)
	≥90%	191 (96.0)	54 (98.2)	121 (98.4)	15 (75.0)	
PR STAINING	≤20%	59 (30.0)	2 (3.6)	43 (35.0)	13 (61.9)	0.001 (Fisher)
	>20%	141 (70.0)	53 (96.4)	80 (65.0)	8 (38.1)	
HER2 STATUS	IHC 0-1+	115 (58.1)	35 (63.6)	67 (55.4)	12 (57.1)	1.0 (Fisher)
	FISH-	83 (41.9)	20 (36.4)	54 (44.6)	9 (42.9)	
LYMPH NODE STATUS	Negative	184 (94.4)	51 (96.2)	112 (93.3)	20 (95.2)	1.0 (Fisher)
	Micrometastatic	11 (5.6)	2 (3.8)	8 (6.7)	1 (4.8)	
SURGERY TYPE	Lumpectomy	157 (78.9)	40 (71.4)	98 (81.0)	18 (85.7)	0.57 (Fisher)
	Mastectomy	42 (21.1)	16 (28.6)	23 (19.0)	3 (14.3)	

ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; IHC: immunohistochemistry; FISH: fluorescent in situ hybridization: Fisher: Fisher's exact test

Table 2. Patients' decisions on accepting adjuvant chemotherapy recommendation in the high-risk cohort (RS >25) as per TAILORx cutoffs, and mean recurrence score (RS)

Therapeutic Decision	Number of Patients (n=21) (%)	Mean RS
Chemotherapy not recommended	3 (14.3)	27
Chemotherapy recommended—Accepted recommendation	12 (57.1)	35
Chemotherapy recommended—Rejected recommendation	6 (28.6)	

For those patients who were recommended chemotherapy (Table 3), twenty-six (96.3%) recommendations were influenced primarily by the recurrence risk being on the upper margin of the intermediate range. Only one of the twenty-seven patients was recommended adjuvant chemotherapy on the explicit basis of both her

Oncotype Dx RS and the characteristics of her malignancy (i.e. grade III, 2.2 cm tumour with a PR staining positivity at 15%). However, these characteristics may have influenced decision-making in other patients, even without being explicitly stated in the patient's chart.

Table 3. Recommendations and rationale for or against adjuvant chemotherapy in patients with a recurrence score (RS) of 18-31

Therapeutic Recommendation	Rationale	Number of Patients (n=60) (%)
Adjuvant chemotherapy		27 (45.0)
	Recurrence score confers sufficient risk	26 (96.3)
	Totality of tumour risk factors	1 (3.7)
No adjuvant chemotherapy		33 (55.0)
	Recurrence score marginally above low risk	23 (69.7)
	No specific rationale noted	8 (24.2)
	Significant patient comorbidities	2 (6.1)

Table 4. Patients' ultimate decision on accepting or rejecting the adjuvant chemotherapy recommendation in the group of patients with recurrence score (RS) of 18 to 31, and comparison of mean RS between those for whom chemotherapy was recommended and those for whom it was not recommended

Therapeutic Decision	Number of Patients (n=60) (%)	RS	P
Chemotherapy not recommended	33 (55.0)	21.5	0.000 (t)
Chemotherapy recommended—Accepted recommendation	16 (26.67)	24.6	
Chemotherapy recommended—Rejected recommendation	11 (18.33)		

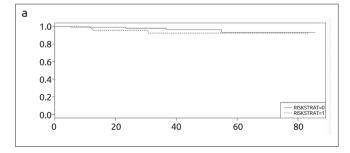
Sixteen patients (26.7%) ultimately accepted the chemotherapy recommendation (Table 4). Five patients (45.5%) rejected the recommendation for adjuvant chemotherapy due to concern for the toxicity the chemotherapy regimen would entail. The remaining six patients did not have data on the reason for their rejecting the recommendation. Patients within the cohort with a RS of 18 to 31 who received adjuvant chemotherapy had a statistically significant higher mean RS than the patients within the cohort who did not receive chemotherapy (Table 4).

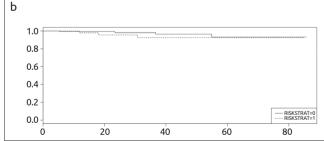
Overall, twenty-two (10.9%) patients in the entire OncoDx cohort received chemotherapy. The most commonly used regimens were the FEC-D (3 cycles of 5-Fluorourcacil-Epirubicin-Cyclophosphamide, followed by 3 cycles of Docetaxel) regimen and the DC (4 cycles of Docetaxel-Cyclophosphamide) regimen.

With a mean follow-up for the whole OncoDx cohort of 33.9 months, progression-free survival (PFS) and overall survival (OS) were favorable in both the low and intermediate-risk cohorts (Figure 1). The low-risk cohort had a mean follow-up of 34.65 months compared to 32.09 months in the intermediate-risk cohort. This was not a statistically significantly difference (p=0.22). There were no statistically significantly differences between the low-risk and intermediate-risk cohorts in PFS or OS either (LogRank test p=0.41 and 0.44, respectively). Three patients (1.5%) had a disease recurrence, one of whom was in the low-risk cohort and two in the intermediate-risk cohort. Seven patients (3.5%) died, four of whom were in the low-risk cohort and three in the intermediate-risk cohort. Only one (14.3%) of these patients died due to progression of her breast cancer, while the remaining six patients died from other diseases.

Comparisons, OncoDx and Pre-OncoDx Cohorts

The pre-OncoDx cohort consisted of one hundred and sixty patients (Table 5). The mean age was 64.9 years (SD 12.75). This


was not statistically significantly different from the OncoDx cohort. Most patients had carcinoma of the breast that was stage I, tumor size between 11 and 22 mm, ductal histologic type, and histologic grade II. None of these parameters were statistically significantly different from the OncoDx cohort. Most patients were also postmenopausal and had no evidence of axillary lymph node micrometastases. However, a greater ratio of patients in the OncoDx cohort had breast-conserving therapy with lumpectomy than in the pre-OncoDx cohort (Fisher exact test p<0.000). As a result, a greater ratio of patients in the OncoDx cohort received adjuvant radiation compared to the pre-OncoDx cohort (Fisher exact test p<0.000). Additionally, ER staining percentage of ≥90% of tumor cells was statistically significantly higher in the OncoDx cohort compared to the pre-OncoDx cohort (Fisher exact test p=0.001). Finally, 10.9% of patients in the OncoDx cohort received adjuvant chemotherapy, while this percentage was 23.8% of patients in the pre-OncoDx cohort (Fisher exact test p=0.001).


With a mean follow-up of 87.3 months in the pre-OncoDx cohort, twenty-eight patients died (17.5%), ten of whom (58.8%) died due to progression of their breast cancer. Eleven patients (6.9%) had a recurrence of breast cancer. There was no statistically significant difference in overall survival and progression-free survival between the OncoDx and pre-OncoDx cohorts (Log-Rank p=0.35 for PFS (Figure 2a) and p=0.83 for OS (Figure 2b)).

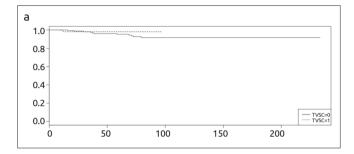
The rationale used to recommend chemotherapy in the pre-OncoDx era was documented in the patients' records in only 46.4% of cases (Table 6). The single-most influential element of the recommendation was that the Adjuvant! online prediction tool (currently not available) favored the addition of adjuvant chemotherapy (26.5% of cases). Similarly, in recommending against chemotherapy, the rationale was documented in only 43.9% of cases (Table 6). The most influential

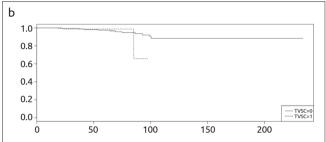
Table 5. Demographic and clinicopathologic characteristics patients in the pre-OncoDx cohort. Last column provides comparisons between the pre-OncoDx and OncoDx patients. Bolded is statistically significant (p<0.05)

Parameter	Category	Pre-OncoDx Cohort (n=160) (%)	OncoDx Cohort (n=201) (%)	р
AGE	Mean	64.9	65.1	0.43 (t)
	≤65	75 (46.9)	93 (46.3)	
	>65	85 (53.1)	108 (53.7)	
MENOPAUSE STATUS	Pre-/peri-	33 (21.3)	22 (10.9)	
	Post-	122 (78.7)	179 (89.1)	
PRIMARY SIZE	<1 cm	35 (26.5)	37 (18.4)	0.11 (x²)
	1-2 cm	62 (47.0)	116 (57.7)	
	>2 cm	35 (26.5)	48 (23.9)	
HISTOLOGY	Ductal	113 (72.9)	139 (69.1)	0.68 (x²)
	Lobular	19 (12.3)	26 (12.9)	
	Mixed	10 (6.5)	20 (10.0)	
	Other	13 (8.4)	16 (8.0)	
GRADE	1	34 (23.1)	57 (28.3)	0.44 (x²)
	II	75 (51.0)	101 (50.3)	
	III	38 (25.9)	43 (21.4)	
ER STAINING	<90%	19 (14.2)	8 (4.0)	0.0016 (Fisher)
	≥90%	115 (85.8)	191 (96.0)	
PR STAINING	≤20%	44 (32.8)	59 (30.0)	0.55 (Fisher)
	>20%	90 (67.2)	141 (70.0)	
HER STATUS	IHC 0-1+	95 (67.4)	115 (58.1)	0.09 (Fisher)
	FISH-	46 (32.6)	83 (41.9)	
LYMPH NODE STATUS	Negative	135 (95.1)	184 (94.4)	0.81 (Fisher)
	Micrometastatic	7 (4.9)	11 (5.6)	
SURGERY TYPE	Lumpectomy	84 (53.2)	157 (78.9)	<0.000 (Fisher)
	Mastectomy	74 (46.8)	42 (21.1)	

Figure 1. a, b. Kaplan-Meier progression-free survival (PFS) curves (a) and overall survival curves (b) in months, of patients in the low recurrence risk (riskstrat=0) cohort versus patients in the intermediate recurrence risk cohort (riskstrat=1). LogRank test p=0.41 and 0.44 respectively

reason for not recommending chemotherapy was either that the specific characteristics of the tumor were considered to confer a low risk of recurrence (13.1% of cases) or because the Adjuvant! online prediction tool showed a minimal benefit from the addition of adjuvant chemotherapy (11.2% of cases).


Overall, adjuvant chemotherapy was recommended to forty-nine of one hundred and sixty (30.6%) patients (Table 6). 77.6% of the


patients who were recommended chemotherapy accepted the recommendation. The reason for patient's rejecting the recommendation was not mentioned in the records in any of the cases.

Our analysis demonstrates that the addition of the Oncotype Dx assay at our cancer center resulted in decreased use of adjuvant chemotherapy while maintaining very good survival outcomes.

Table 6. Recommendations to receive or not receive adjuvant chemotherapy, the rationale, and the patients' ultimate decision in the pre-OncoDx cohort, percentage of total number of patients in the pre-OncoDx cohort

Therapeutic Recommendation and Decision	Rationale	Number of Patients (n=160) (%)
Adjuvant Chemotherapy		49 (30.6)
	No specific rationale noted	26 (53.6)
	Online prediction tools supported benefit	13 (26.5)
	Totality of tumour characteristics	9 (18.4)
Accepted Recommendation		38 (77.6)
Rejected Recommendation		11 (22.4)
No Adjuvant Chemotherapy		111 (69.4)
	No specific rationale noted	60 (56.1)
	Totality of tumour characteristics	14 (13.1)
	Online prediction tools did not support benefit	12 (11.2)

Figure 2. a, b. Kaplan-Meier progression-free survival (PFS) curves (a) and overall survival curves (b) in months, of patients in the pre-OncoDx cohort (TvsC=0) versus patents in the OncoDx cohort (TvsC=1). LogRank test p=0.35 and 0.83 respectively

Discussion and Conclusion

Before the advent of genomic assays, clinical and pathologic parameters, such as the patient's age and general state of health, menopause status, and size and grade of the tumor at the time of presentation had been used to determine risk of disease recurrence in patients with early ER-positive, HER2-negative carcinoma of the breast. Estimated higher risk suggested the need for the addition of adjuvant chemotherapy to adjuvant hormonal therapy in the treatment plan. However, the underlying genetic lesions of the tumor may be more important in predicting its behavior than a patient's individual characteristics or the overall stage and grade of the malignancy at the time of presentation. This new knowledge was corroborated by the introduction of genomic profiling, which categorized breast cancers in distinct approximated but not completely overlapping groups, with the groups defined by IHC for ER, PR, and HER2 receptors (14). Two ER-positivity and HER2-negativity breast cancer sub-types with overlapping IHC profiles have been defined by genomic profiling, termed luminal A and luminal B. Both have distinct prognosis and response to hormonal therapy but are difficult to predict clinically given the overlapping clinicopathologic profile (15). Several genomic tests have been introduced and validated in the clinical setting attempting to predict outcomes of cancers in the ER-positive, HER2-negative spectrum, based on expressions of a subset of genes, ranging from a few to several dozen in the tumor genome. Genomic tests include the 70-gene signature, the PAM50 test, the BCI, and the Oncotype Dx assay, the latter of which has been used in our cancer center and is the subject of this report.

The Oncotype Dx assay is a proprietary RT-PCR-based test that examines expression of sixteen genes along with five controls. The genes included in the assay are involved in tumor proliferation and invasion as well as hormone and growth factor signaling (13). In addition to providing a RS and a numeric estimation of ten-year distant recurrence risk if only hormonal therapy (tamoxifen) is used in the adjuvant setting, the Oncotype Dx assay provides an estimation of the benefit of adding adjuvant chemotherapy to adjuvant hormonal therapy. Excellent results have been reported in low RS patients treated only with adjuvant hormonal therapy (16). Moreover, a decrease in the use of chemotherapy in the ER-positive, HER2-negative, lymph nodenegative population has also been reported (11). These results confirm that the assay succeeds in decreasing the use of chemotherapy without compromising survival outcomes.

Patients with a high RS from the Oncotype Dx assay derive benefit from adjuvant chemotherapy due to their higher risk of disease recurrence, and the patients in the low RS category conversely do not accrue further benefits with the addition of adjuvant chemotherapy. However, the optimal approach for patients with intermediate RS has been uncertain, given the higher risk of recurrence but only minimal benefit of adjuvant chemotherapy (10, 11). In practice, most treating physicians would consider all patients with a high Oncotype Dx RS > above 30 and most patients above 25 to be candidates for chemotherapy. This practice has been recently validated by the results from the intermediate group of the TAILORx study that confirmed minimal, if any, benefit from chemotherapy in the intermediate group with a RS of 11 to 25 (17). An exemption may

be for patients below age 50 and a RS of 20 to 25 who may derive some benefit from adjuvant chemotherapy.

In our retrospective analysis of women diagnosed with carcinoma of the breast at our cancer center, we observed the avoidance of adjuvant chemotherapy in low and low-intermediate recurrence risk patients with early ER-positive, HER2-negative, lymph node-negative or micrometastatic disease. The decision to offer adjuvant chemotherapy in most intermediate-risk patients seemed to be influenced by the patient's RS from the Oncotype Dx assay. This result is similar to the conclusion of another study in Ontario (11). Additionally, our analysis demonstrated that a higher RS in the intermediate-risk cohort predicted use of adjuvant chemotherapy. The PR staining intensity was also statistically different for the low and intermediate-risk cohorts, which is consistent with the degree to which a lower PR staining by IHC correlates with recurrence risk. This is consistent with the results reported by other series (18-20). Finally, we found that survival outcomes were favorable in both low and intermediate-risk cohorts.

Prediction of a RS above 25 may be of special clinical interest in settings where the Oncotype Dx assay is not available, given that patients in this range could actually be among the subgroup who would benefit from the addition of adjuvant chemotherapy. In our analysis, the three pathological factors most significantly associated with a RS >25 were high grade and a low positivity for ER (<90%) and for PR (≤20%). These results concord with another investigation that proposed a combination of ER, PR, and Ki67 immunohistochemical score as a valid predictor of the Oncotype Dx RS (18). The two component (PR/grade) predictor we propose is simpler and avoids the inclusion of Ki67, which may not be universally available, and has a similar discriminatory value (21).

Compared with the pre-OncoDx cohort, our analysis demonstrated a decrease in the use of adjuvant chemotherapy in the Oncotype era (89.1% versus 76.3%, respectively, Fisher exact test p=0.0016). In addition, fewer patients were recommended adjuvant chemotherapy in the Oncotype era compared to the pre-Oncotype era (17.9% versus 30.6%, respectively, Fisher exact test p=0.0059). Both cohorts were largely similar from a demographic and clinicopathologic characteristics perspective. Our study also demonstrated that both cohorts had favorable survival rates, with no statistically significant differences in the comparisons of Kaplan-Meier plots, though there was an absolute higher number of death and progression in the pre-Oncotype cohort. This is likely partially related to a longer follow-up in this cohort. From limited available data, the most significant influence on recommending adjuvant chemotherapy in the pre-OncoDx cohort was the use of Adjuvant! online prediction tool. Thus, in both the Oncotype and pre-Oncotype era, recommendations on the addition of adjuvant chemotherapy relied on predictive tools to complement clinical judgment.

Besides the general disadvantages of retrospective and non-randomized comparisons, our analysis is limited by the fact that the rationale for the chemotherapy recommendation in the pre-Oncotype era was not well documented, making a comparison of decision-making changes between pre-OncoDx and OncoDx cohorts incomplete.

In conclusion, the addition of the Oncotype Dx assay at our cancer center resulted in decreased use of adjuvant chemotherapy while maintaining excellent survival outcomes. This, together with the fact that genomic tests seem to be cost effective, suggests continued utility in clinical practice [22]. Future investigations will aim at providing even

better prognostic and therapy predictive tools to further advance personalized oncology.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of Sault Area Hospital.

Informed Consent: Informed consent was not taken due to retrospective design of the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - I.A.V.; Design - I.A.V.; Supervision - I.A.V.; Resources - S.T., I.A.V.; Materials - I.A.V.; Data Collection and/or Processing - S.T., I.A.V.; Analysis and/or Interpretation - S.T., I.A.V.; Literature Search - S.T., I.A.V.; Writing Manuscript - S.T., I.A.V.; Critical Review - S.T., I.A.V.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: This study was partially supported by a Dean's summer student research grant from the Northern Ontario School of Medicine.

References

- Fallahpour S, Navanneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open 2017; 5: E734-E739. (PMID: 28951445) [CrossRef]
- Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, Cronin KA. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst 2014; 106: dju055. (PMID: 24777111) [CrossRef]
- Saadatmand S, Bretveld R, Siesling S, Tilanus-Linthorst MMA. Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173797 patients. Br Med J 2015; 351: H4901. (PMID: 26442924) [CrossRef]
- Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, Díez M, Viladot M, Arance A, Muñoz M. Clinical implications of the intrinsic subtypes of breast cancer. Breast 2015; 24: S26-S35. (PMID: 26253814) [CrossRef]
- Kuijer A, Straver M, den Dekker B, van Bommel ACM, Elias SG, Smorenburg CH, Wesseling J, Linn SC, Rutgers EJT, Siesling S, van Dalen T. Impact of 70-gene signature use on adjuvant chemotherapy decisions in patients with Estrogen Receptor-positive early breast cancer: Results of a prospective cohort study. J Clin Oncol 2017; 35: 2814-2819. (PMID: 28813638) [CrossRef]
- Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, Liu S, Leung S, Geiss G, Snider J, Vickery T, Davies SR, Mardis ER, Gnant M, Sestak I, Ellis MJ, Perou CM, Bernard PS, Parker JS. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics 2015; 8: 54. (PMID: 26297356) [CrossRef]
- Ohnstad HO, Borgen E, Falk RS, Lien TG, Aaserud M, Sveli MAT, Kyte JA, Kristensen VN, Geitvik GA, Schlichting E, Wist EA, Sørlie T, Russnes HG, Naume B. Prognostic value of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res 2017; 19: 120. (PMID: 29137653) [CrossRef]
- Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, Harris A, Goss P, Sotiriou C, Erlander M, Sgroi D. A five-gene molecular grade index and HOXB13:IL1717BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 2008; 14: 2601-2608. (PMID: 18451222) [CrossRef]
- Sgroi DC, Carney E, Zarrella E, Steffel L, Binns SN, Finkelstein DM, Szymonifka J, Bhan AK, Shepherd LE, Zhang Y, Schnabel CA, Erlander MG, Ingle JN, Porter P, Muss HB, Pritchard KI, Tu D, Rimm DL, Goss PE. Prediction of late disease recurrence and extended adjuvant letrozole benefit by the HOXB13:IL17BR biomarker. J Natl Cancer Inst 2013; 105: 1036-1042. (PMID: 23812955) [CrossRef]

- Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 2008; 26: 721-728. (PMID: 18258979) [CrossRef]
- Levine MN, Julian JA, Bedard PL, Eisen A, Trudeau ME, Higgins B, Bordeleau L, Pritchard KI. Prospective evaluation of the 21-gene recurrence score assay for breast cancer decision-making in Ontario. J Clin Oncol 2016; 34: 1065-1072. (PMID: 26598746) [CrossRef]
- Paik S. Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. The Oncologist 2007; 12: 631-635. (PMID: 17602054) [CrossRef]
- McVeigh TP, Kerin MJ. Clinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancer. Breast Cancer (Dove Med Press) 2017; 9: 393-400. (PMID: 28615971) [CrossRef]
- Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869-10874. (PMID: 11553815) [CrossRef]
- 15. García Fernández A, Chabrera C, García Font M, Fraile M, Lain JM, Gónzalez S, Barco I, González C, Torres J, Piqueras M, Cirera L, Veloso E, Pessarrodona A, Giménez N. Differential patterns of recurrence and specific survival between luminal A and luminal B breast cancer according to recent changes in the 2013 St Gallen immunohistochemical classification. Clin Transl Oncol 2015; 17: 238-246. (PMID: 25270605) [CrossRef]
- 16. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA Jr, Zujewski J, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin P, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Atkins JN, Berenberg JL, Sledge GW. Prospective validation of a 21-gene expression

- assay in breast cancer. New Engl J Med 2015; 373: 2005-2014. (PMID: 26412349) [CrossRef]
- 17. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 2018; 379: 111-121. (PMID: 29860917)
- Bradshaw SH, Pidutti D, Gravel DH, Song X, Marginea EC, Robertson SJ. Predicting OncoDx Recurrence Scores with Immunohistochemical Markers. Appl Immunohistochem Mol Morphol 2013; 21: 490-496. (PMID: 23455176) [CrossRef]
- Tang P, Wang J, Hicks DG, Wang X, Schiffhauer L, McMahon L, Yang Q, Shayne M, Huston A, Skinner KA, Griggs J, Lyman G. A lower Allred score for progesterone receptor is strongly associated with a higher recurrence score of 21-gene assay in breast cancer. Cancer Invest 2010; 28: 978-982. (PMID: 20690804) [CrossRef]
- Hanna MG, Bleiweiss IJ, Nayak A, Jaffer S. Correlation of Oncotype Dx recurrence score with histomorphology and immunohistochemistry in over 500 patients. Int J Breast Cancer 2017; 2017: 1257078. (PMID: 28168058) [CrossRef]
- Thibodeau S, Voutsadakis IA. Prediction of the Oncotype Dx recurrence score using clinical parameters: A comparison of available tools and a simple predictor based on grade and progesterone receptor. Hematol Oncol Stem Cell Ther 2019. doi: 10.1016/j.hemonc.2019.02.001. [Epub ahead of print]. (PMID: 30796885) [CrossRef]
- Rouzier R, Pronzato P, Chéreau E, Carlson J, Hunt B, Valentine WJ. Multigene assays and molecular markers in breast cancer: systemic review of health economic analyses. Breast Cancer Res Treat 2013; 139: 621-637. (PMID: 23722312) [CrossRef]

Our 20-Year Institutional Experience with Surgical Approach for Breast Hamartomas

Zeliha Türkyılmaz¹ [10], Tahacan Aydın² [10], Ravza Yılmaz³ [10], Semen Önder⁴ [10], Enver Özkurt⁵ [10], Mustafa Tükenmez⁵, Mahmut Müslümanoğlu⁵, Gülden Acunaş⁵, Abdullah İğci⁵, Vahit Özmen⁵, Ahmet Dinçağ⁵ [10], Neslihan Cabioğlu⁵

ABSTRACT

Objective: Hamartomas are rare, slowly-growing breast tumours. Clinical, radiological and histopathological examination together increase the diagnostic accuracy. To evaluate the clinicopathologic features of hamartomas and outline our clinical approach to hamartomas in our 20-year experience at our Breast Clinic.

Materials and Methods: Between 1995 and 2015, 24 cases were retrospectively analyzed with a diagnosis of breast hamartoma at our Breast Clinic followed by excisional biopsy. Data was obtained on patient demographics, clinical examination, radiological findings and histopathological subtypes.

Results: Of 1338 benign breast tumours excised from January 1995 to January 2015, 24 (1.8%) were identified as breast hamartoma. Median age of patients was 42 (range, 13-70), whereas the median tumour size was 5 cm (1-10 cm). On preoperative imaging, hamartoma was most commonly misdiagnosed as fibroadenoma. Pathological examination of the 24 biopsy specimens revealed 3 cases with pseudoangiomatous stromal hyperplasia, and another hamartoma associated with a radial scar within the centre of the lesion. Of those, one patient was diagnosed with malignant phylloides tumour in the same breast. At a median follow-up 58.4 months, none of the patients recurred or developed malignancy.

Conclusion: Hamartomas can often be missed by clinicians, due to its benign nature which is poorly understood. Despite their slow growth, hamartomas can reach large sizes and can cause breast asymmetry. Although it is rare, hamartoma can be seen along with malignancy, as it is formed from similar components of breast tissue. Therefore, careful diagnosis and appropriate management including surgery are required.

Keywords: Breast disease, hamartoma, phyllodes tumor

Cite this article as: Türkyılmaz Z, Aydın T, Yılmaz R, Özkurt E, Tükenmez M, Müslümanoğlu M, Acunaş G, İğci A, Özmen V, Dinçağ A, Cabıoğlu N. Our 20-Year Institutional Experience with Surgical Approach for Breast Hamartomas. Eur J Breast Health 2019; 15(3): 171-175.

Introduction

Hamartomas were first defined as mastomas by Pyrm (1). Before the term hamartoma came in to use in 1971 by Arrigoni, the lesion was also described as an adenolipoma and fibroadenolipoma. At present, some authors accept adenolipomas, adenohibernoma and myoid hamartomas as variants of hamartoma (2-4). Breast hamartomas are rare benign tumors comprising 0.7-1.2% of benign breast lesions in women. It is most commonly seen in perimenopausal period (5-7).

Hamartomas are slowly-growing lesions with a mean diameter ranging from 2 cm to 5 cm. However, sometimes hamartomas can reach giant dimensions (8). Patients usually present with a painless mass or breast anisomastia (7, 9-12). Hamartomas may be missed by physical examination. Mammographically, these lesions can be seen as mass containing fibrous and fatty tissue (9, 10). Furthermore, an excisional biopsy is generally required to distinguish hamartoma from other benign breast lesions such as fibroadenoma, lipoma and cystosarcoma phyllodes (12). Similar to what the breast epithelial cells do, the stromal cells also express estrogen and progesterone receptors (13). Despite hamartomas are considered as benign disease, it can be uncommonly seen along with a breast malignancy (14-16).

In this report, we aimed to evaluate the clinicopathologic features of hamartomas and outline our clinical approach to hamartomas in our 20-year experience at our Breast Clinic.

¹Department of General Surgery, Trakya University School of Medicine, Edirne, Turkey

²İstanbul University, İstanbul School of Medicine, İstanbul, Turkey

³Department of Radiology, İstanbul University, İstanbul School of Medicine, İstanbul, Turkey

⁴Department of Pathology, İstanbul University, İstanbul School of Medicine, İstanbul, Turkey

⁵Department of General Surgery, İstanbul University, İstanbul School of Medicine, İstanbul, Turkey

Materials and Methods

Between January 1995 and January 2015, 1338 patients who underwent surgery with a diagnosis of benign breast disease at the Breast Clinic of the Department of Surgery, İstanbul University School of Medicine, were retrospectively analyzed. Of those, 24 cases (1.8%) were identified with a definitive pathology of hamartoma. A database was created for patient demographics, clinical findings including physical examination and radiological findings, surgery, and histopathological characteristics. All patients underwent excisional biopsy. Clinical follow-up data was also obtained. Statistical Packages for the Social Sciences (SPSS) version 17 (SPSS Inc.; Chicago, IL, USA), and Fisher's exact test was used for categorical analysis. Spearman's correlation test was used to examine the associations between parameters. Mann Whitney-U test was used for continuous variables. Ethics committee approval was obtained for this retrospective analysis.

Results

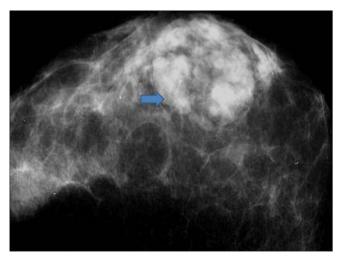
Of the 24 patients, 8 were diagnosed from 1995 to 2005, and 16 patients were diagnosed between the years 2005-2015. Of those, there was only one male patient (4.2%), whereas the remaining were female (95.8 %). The median age of patients was 42 (range, 13 - 70 years), and 17 were premenopausal (74%). Five patients (20.8%) had a family history of breast carcinoma. The majority of the patients (n=15, 62.5%) presented with a soft painless mass, whereas 4 presented with a breast lump and pain (Table 1). Nevertheless, 2 patients were asymptomatic who were diagnosed during routine screening.

All patients were examined by ultrasound imaging, whereas 16 (66.7%) had a mammogram. Ultrasonography frequently showed an oval-shaped, well-defined, heterogeneous mass containing cystic areas defining a diagnosis of hamartoma in 9 cases (37.5 %). Other common findings were associated with a diagnosis of fibroadenoma in 7 patients (29%), and cystosarcoma phyllodes in 2 patients (8.3 %). Mammography mostly revealed a nodular opacity (n=11, 68.8%) or an asymmetric density (n=2, 12.5%), or BIRADS IV microcalcifications (n=2, 12.5%).

Seven cases (29.1 %) were diagnosed as likely fibroadenoma on imaging. For masses of large size on radiological examination, a misleading preliminary diagnosis of phyllodes tumour was established. The mammography and ultrasonography findings of the cases are given in Table 2. For 11 patients with radiological less than 5 cm and 13 patients with a radiological mass greater than 5 cm, hamartoma was identified as a possible diagnosis in 18.2% and 46.2% respectively (p=0.21). Mammographic image of hamartoma was shown in Figure 1.

For preoperative diagnosis, fine needle aspiration (FNA) was performed in 10 patients (41.7%), whereas 4 patients had only core biopsy (16.7%). Furthermore, 5 patients had both FNA and core biopsy, whereas the remaining underwent excisional biopsy for diagnosis. None of the FNA finding predicted the final pathology of hamartoma. Of patients with a core biopsy (n=9), the core biopsy revealed fibrolipomatous cell fragments in 3 patients (33.3%) that was concordant with a diagnosis of hamartoma. However, hamartoma diagnosis could not be confirmed in 6 patients where the pathological finding was stromal fibrosis in 3 patients, fibrosis/adenosis in 1 patient, myxoid tumor in 1 patient and fibrocystic changes in 1 patient.

On pathological examination of the excisional biopsy specimens of hamartoma cases, pseudoangiomatous stromal hyperplasia was pres-


Table 1. Demographic and Clinical and Tumor Characteristics of Patients

Patient and Tumor Characteristics	5 N	%
Median age	42 (range, 13-70)	
Age groups		
≤20	2	8.3
20-30	3	12.5
30-40	6	25
40-50	5	20.8
50-60	4	16.7
60-70	4	16.7
Premenopausal	17	74
Postmenopausal	6	26
Family history	5	20.8
Gender		
Female	23	95.8
Male	1	4.2
Presenting symptoms		
Pain	2	8.3
Pain & palpable mass	4	16.6
Palpable mass	15	62.5
Palpable mass & anisomastia	1	4.2
Screening	2	8.3
Imaging techniques		
Ultrasound	24	100
Mammogram	16	66.7
Magnetic Resonance Imaging	6	25
Preoperative Diagnosis		
Fine Needle Aspiration (FNA)	10	41.7
Core Biopsy	4	16.7
FNA & core biopsy	5	20.8
Excisional biopsy	5	20.8
Median tumor size	5 cm (range, 1-10 cr	n)
Associated lesions with hamartoma		
Pseudoangiomatosis hyperplasia	3	12.5
Radial scar	1	4.2
Malignancy	1	4.2
Unknown data were excluded from the a	inalysis	

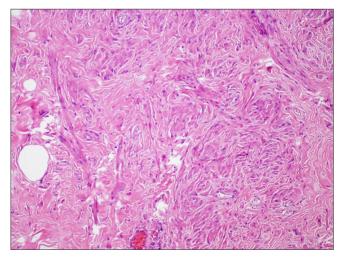

ent in 3 specimens. In one case, fatty necrosis was identified, whereas fibro-hyaline stroma were present in another case (Figure 2). Furthermore, histopathological examination established multiple foci of microcalcification in 4 cases (16.6%). Both foci of adenosis and sclerosing adenosis were present in 2 cases. Interestingly, hamartoma was associated with a radial scar in one case.

Table 2. Mammography and ultrasonography findings

Ultrasonography Sign	n:24	100%
Heterogenous mass containing cystic areas	9	37.5
Fibroadenoma	7	29
Cystosarcoma phloides	2	8.5
Non-descriptive findings	6	25
Mammography sign	n:16	100
Nodular opacity	11	68.8
Asymmetrical density	2	12.5
Microcalcifications	2	12.5
Non-descriptive findings	1	6.2

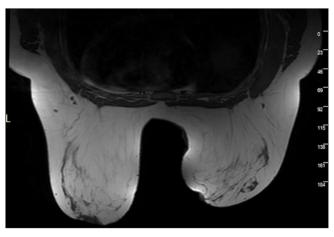


Figure 1. Mammographic appearance of a hamartoma who underwent surgery for diagnostic purposes

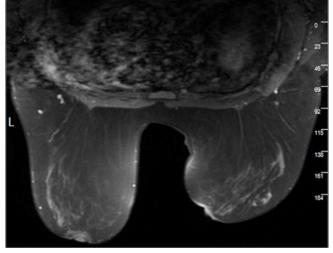


Figure 2. Microscopic findings of hamartoma in a patient who underwent excisional biopsy for diagnosis and therapy (hematoxylin & eosin staining, 4X)

The median tumour size was 5 cm (1-10 cm). The patient's age and tumour size were negatively correlated (r=-0.414; p=0.045). However, no significant difference could be found in the mean tumour size be-

Figure 3. Pre-contrast fat-suppressed T1-weighted images in Magnetic Resonance imaging (MRI) of hamartoma showing a hyperintense fatty signal

Figure 4. Postcontrast MRI images of ovoid shaped-hamartoma in the lower upper quadrant of the right breast as a lesion having both a fatty density fat-suppressed and contrast-enhanced glandular component inside

tween premenopausal and postmenopausal patients (premenopausal, 5.58 ± 2.82 , vs postmenopausal, 4.31 ± 2.92 ; p=0.309).

The only male case was 65-year old patient with a diagnosis of prostate cancer who presented with a mass in the right upper quadrant of his breast. Even though a metastatic lesion to the breast was suspected, ultrasonographic findings revealed a solid mass with a size "47x20 mm" with a preoperative diagnosis of fibroadenoma. Interestingly, the definitive pathology of the excisional biopsy showed pseudoangiomatous stromal hamartoma.

In another case, a 21-year old female presented with mass following an excision for a malignant phyllodes tumour at another institute. There was suspicion of residual disease on imaging and re-excision was therefore completed at our institution. No residual tumour could be detected in the surgical specimen. However, the pathological examination of the 6x9 cm mass unexpectedly revealed a diagnosis of hamartoma.

The median follow-up of these patients was 58.4 months (1-186 months). There was no recurrence of hamartoma or no malignancy was detected during the follow-up period.

Discussion and Conclusion

Hamartomas are very rare benign tumours. Breast cancer screening programs and breast cancer awareness activities in Turkey have gained momentum in recent years. This situation increased the number of women undergoing examinations, breast ultrasonography, and mammography. As a result, the detection of benign diseases as well as those of breast malignancies has increased. Our 20-year clinical experience have also shown only 2% of patients with benign lesions underwent surgery for hamartomas. Of 24 patients revealed in the 20-year study, 8 of them were diagnosed between 1995 and 2005, whereas 16 of them were detected between 2005 and 2015. In a study conducted in 1978, 10000 mammograms were recorded in a 9-year period and there were only 16 diagnoses of breast hamartoma identified (17). In another study, the authors stated they found 41 hamartomas in 5834 patients undergoing breast biopsy (5). The present study included 1338 patients operated for benign breast disease, of which 24 (1.8 %) were breast hamartoma. One of our patients was male which is relatively rare. The male patient firstly presented with concerns that the breast mass was metastasis of his prostate cancer. However, an ultrasound finding indicated that the mass present in the breast was a fibroadenoma. The patient then underwent excisional biopsy with a final pathology of hamartoma. There are very few published cases of male hamartoma. In a study by Gupta et al. (18), there were only three reported cases of male breast hamartoma. Ravakhah et al. (19) identified a hamartoma in a 36 -year-old male patient with a complaint of slow-growing mass in the left breast.

Hamartomas are seen in middle-aged women as a painless mass of soft consistency or present as a complaint of breast asymmetry. Hamartomas are most commonly seen between the ages 40 to 45 (9, 10, 18). In our case series, the median age was 42 years. Of those, 15 (62.5%) presented with a painless palpable breast mass. The average diameter of a hamartoma is reported at 2 to 5 cm (20). In the literature, breast hamartomas have been detected in very large sizes (21, 22). Weinzweig et al. (22) described a young female patient in the post-lactational period who was diagnosed with a giant size hamartoma followed by an excisional biopsy and required mastopexy. The median size was 5 cm ranged from 1 cm to 10 cm in our study.

Histopathologic features of hamartoma are not characteristic. Breast hamartomas consist of breast ducts and lobules, fibrous stroma, adipose tissue and smooth muscle in varying quantities (23). Clinically, fibroadenomas and phyllodes tumours are often indistinguishable from hamartomas. Especially breast hamartomas are mostly diagnosed as fibroadenomas (12, 20, 24). In our study, the ultrasound findings have shown that hamartoma was most commonly misdiagnosed as fibroadenoma in 7 cases, and secondly phyllodes tumour in 2 cases.

In mammography, presence of peripheral lucent halo, and normal breast pattern are indicators of hamartoma. Therefore, it's described as "breast within a breast". The mammographic findings of hamartoma are the presence of fat and soft tissue density, a mass with a well-defined border, and the presence of a thin radiopaque border (pseudocapsule). Hamartoma contains fatty, glandular or fibrous tissue in varying quantities seen as a mammographic opacity. Although not often, microcalcifications can be seen with hamartoma (10, 13, 17, 25, 26). The ultrasonographic findings revealed that hamartomas were seen as oval, well-defined mass with heterogeneous echogenicity. Furthermore, in general, echogenic or echolucent halo and posterior strengthening was seen in hamartoma (27). Fibroadenoma appears to

be encapsulated and well-defined lesion in USG. It is usually homogenous and hypoechoic as compared to the normal breast parenchyma, and sometimes there may be low-level internal echoes. Characteristically, the transverse diameter is greater than the anteroposterior diameter. Calcifications may occur and uncommonly, the mass may appear complex, isoechoic, or hyperechoic. Cystosarcoma phyllodes are a mass with well-defined boundaries that have a non-homogeneous echogenic structure with generally cystic areas. (28)

In 9 of our 24 hamartoma cases, ultrasonography indicated a diagnosis of hamartoma, that might be helpful in differential diagnosis. Although not statistically significant, ultrasonography was found to be more diagnostically useful in patients with a mass greater than 5 cm compared to those other smaller lesions. In 5 cases (20.8%), mammography results correlated with USG findings, and both USG&MMG were found to be useful in diagnosis of breast hamartomas. In our current practice, breast MRI has been commonly used as a diagnostic imaging tool to confirm hamartomas in addition to ultrasound and mammogram as reported before (29). MRI has been especially helpful to determine whether excisional biopsy is required for diagnostic and therapeutic purposes. Patients with a radiological diagnosis of hamartomas can be conservatively followed without surgery with 6-month intervals without performing surgery for at least 2 years. The appearance of the breast hamartoma with MRI is shown in Figure 3 and 4.

There is no specific histological findings in the diagnosis of hamartoma and the pathological diagnosis is often difficult. Many studies have pointed out that there is a limited role in the diagnosis of fine needle aspiration cytology and core biopsy. Core or fine needle biopsy usually provides an inadequate or nonspecific biopsy result. Core biopsy seems to be more important to exclude malignancy (4, 9, 11). Our results suggest that, fine needle and core biopsy have been useful to confirm a benign lesion, however they may not be adequate for diagnostic purposes.

Tse and colleagues reported 25 cases of hamartoma. On histopathological examination of these cases, all contained the fatty tissue, whereas interlobular fibrosis was seen in 21 patients and pseudoangiomatous stromal hyperplasia was detected in 8 patients (11). In a further study, of 27 cases analyzed, pseudoangiomatous stromal hyperplasia was identified in 25.9% (10). In this study, 3 cases contained pseudoangiomatous stromal hyperplasia (12.5%), and two cases (8.3%) were found to have both sclerosing adenosis and adenosis. Foci of microcalcification were detected in 4 of our cases (16.6%). A radial scar was identified in one case of hamartoma. Papillomas, fibrocystic disease, epithelial changes, ductal ectasia and atypical lobular hyperplasia frequently accompany hamartomas (10, 11).

Uncommonly, hamartomas are reported with invasive ductal and invasive lobular breast carcinoma (14, 15, 24). Albawardi et al. (23) reported mammary hamartomas to be associated with columnar cell changes including flat epithelial atypia. In our study, invasive ductal or lobular carcinoma was not detected with hamartoma. In addition, there were no cases diagnosed with ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS) within hamartoma. However, one of our cases in this series was interestingly diagnosed with malignant phyllodes tumour that was found in the same breast as hamartoma, which has not been described in the literature before.

Daya et al. (3) noted in 25 patients, there were 2 cases of recurrence at 7 and 18 months postoperatively. In many studies, an emphasis

has been given to the need to complete a total excision to avoid recurrence. In this study, at a median follow-up period of 58.4 months postoperatively, no recurrence was detected or none of them developed malignancy.

In conclusion, due to the development of radiological methods in recent years, the diagnosis of hamartoma can easily be made. This could be more valid and reliable if confirmed by core-needle biopsy. For those patients in this situation, surgical excision is unnecessary, and follow-up is appropriate as the hamartoma is benign. However, surgical excision is required in patients with suspected malignancy who cannot be determined hamartoma on radiographically.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of İstanbul University School of Medicine.

Informed Consent: Informed consent was not received due to the retrospective nature of the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - N.C., Z.T.; Design - N.C., A.İ.; Supervision - M.M., A.D.; Resources - A.İ., G.A.; Materials - M.M., M.T..; Data Collection and/or Processing - T.A., E.Ö.; Analysis and/or Interpretation - S.Ö., G.A.; Literature Search - T.A., R.Y.; Writing Manuscript - Z.T., E.Ö.; Critical Review - V.Ö., A.D.; Other - S.Ö., R.Y.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Pyrm P. Pseudoadenome, Adenome und Mastome der weiblichen Brustdrüse; Studien für die Entstehung umschriebener adenom-ähnlicher Herde in der Mamma und für die Nachahmung der Brustdrüsengewebes durch echte Adenome und Fibroadenome. Beitr Pathol Anat Pathol 1928; 81: 221.
- Arrigoni MG, Dockerty MB, Judd ES. The identification and treatment of mammary hamartoma. Surg Gynecol Obstet 1971; 133: 577-582. (PMID: 5096305)
- Daya D, Trus T, D'Souza TJ, Minuk T, Yemen B. Hamartoma of the breast, an underrecognized breast lesion: A clinicopathologic and radiologic study of cases. Am J Clin Pathol 1995; 103: 685-689. (PMID: 7785651) [CrossRef]
- Cheng CY, Long SJ, Wu MS, Pan ST. Breast adenolipoma-a variant hamartoma. Journal of Medicine and Health 2014; 3: 109-115.
- Charpin C, Mathoulin MP, Andrac L, Barberis J, Boulat J, Sarradour B, Bonnier P, Piana L. Reappraisal of breasthamartomas. A morphological study of 41 cases. Pathol Res Pract 1994; 190: 362-371. (PMID: 8078805) [CrossRef]
- Fisher CJ, Hanby AM, Robinson L, Millis RR. Mammary hamartomareview of 35 cases. Histopathol 1992; 20: 99-106. (PMID: 1559675)
 [CrossRef]
- Dragoumis D, Assamaki A, Tsiftsoglou A. Hamartoma of the breast. An uncommon benign tumor. Am J Case Rep 2008; 9: 101-104.

- Sanal HT, Ersoz N, Altinel O, Unal E, Can C. Giant hamartoma of the breast. Breast J 2006; 12: 84-85. (PMID: 16409596) [CrossRef]
- Wu CY, Lin SH, Tu SH, Huang CS, Jeng CM. Hamartoma of the Breast. Chin J Radiol 2003; 28: 143-148.
- Sevim Y, Kocaay AF, Eker T, Celasin H, Karabork A, Erden E, Genç V. Breast hamaroma: A clinicopathologic of 27 cases and a literature review. Clinics 2014; 69: 515-523. (PMID: 25141109) [CrossRef]
- 11. Tse GM, Law BK, Ma TK, Chan AB, Pang LM, Chu WC, Cheung HS. Hamartoma of the breast: a clinicopathological review. J Clin Pathol 2002; 55: 951-954. (PMID: 12461066) [CrossRef]
- Riveros M, Cubilla A, Perotta F, Solalinde V. Hamartoma of the breast. J Surg Oncol 1989; 42: 197-200. (PMID: 2811385) [CrossRef]
- Amir RA, Sheikh SS, Breast hamartoma: A report of 14 cases of an underrecognized and under-reported entity. Int J Surg Case Rep 2016; 22: 1-4. (PMID: 27002389) [CrossRef]
- Kemp TL, Kilgore MR, Javid SH. Invasive ductal carcinoma a rising within a large mammary hamartoma. Breast J 2015; 21: 196-197.
 (PMID: 25613435) [CrossRef]
- Lambert J, Jerjir N, Casselman J, Steyaert L. Invasive lobuler carsinoma arising in a hamartoma of the breast: A case report. Clin Breast Cancer 2015; 15; 63-66. (PMID: 25240620) [CrossRef]
- Baer L, Rogers SC, Farrelly P, Tornos C, Sweeney K. The first case of HER2+ invasive ductal carcinoma arising from a breast hamartoma and literature review. J Natl Med Assoc 2017; 109: 55-59. (PMID: 28259217) [CrossRef]
- Hessler C, Schnyder P, Ozzello L. Hamartoma of the breast: Diagnostic observation of 16 cases. Radiology 1978; 126: 95-98. (PMID: 619444) [CrossRef]
- Gupta SS, Singh O, Hastir G, Arora G, Sabharwal G, Mishra H. Breast hamartoma with intrathoracic extension 13 year old boy. J Cancer Res Ther 2010; 6: 86-88. (PMID: 20479554) [CrossRef]
- Ravakhah K, Javadi N, Simms R. Hamartoma of the breast in a man: first case report. Breast J 2001; 7: 266-268. (PMID: 11678806) [CrossRef]
- Magdalene KF, Robin G, Sapna M. Mammary hamartoma- a clinical dilemma. Gulf J Oncolog 2014; 1: 87-90. (PMID: 24610294)
- Barbaros U, Deveci U, Erbil Y, Budak D. Breast hamartoma. A case report. Acta Chir Belg 2005; 105: 658-659. (PMID: 16438081) [CrossRef]
- Weinzweig N, Botts J, Marcus E. Giant hamartoma of the breast. Plast Reconst Surg 2001; 15; 107: 1216-1220. (PMID: 11373565) [CrossRef]
- Albawardi AS, Al Sharri SM, Al Bashir M. Flat epithelial atypia in a mammary hamartoma: Case report & clinicopathologic correlates. Int J Clin Exp Med 2016; 9: 4896-4900.
- Coyne J, Hobbs FM, Boggis C, Harland R. Lobular carsinoma in mammary hamartoma. J Clin Pathol 1992; 45: 936-937. (PMID: 1430271)
 [CrossRef]
- Pui MH, Movson IJ. Fatty tissue breast lesions. Clin Imaging 2003; 27: 150-155. (PMID: 12727050) [CrossRef]
- Murat A, Ozdemir H, Yildirim H, Poyraz AK, Ozercan R. Hamartoma of the breast. Australas Radiol 2007; 51: 37-39. (PMID: 17875153) [CrossRef]
- Park SY, Oh KK, Kim EK, Son EJ, Chung WH. Sonographic finding breast hamartoma: Emphasis of compressibilty. Yonsei Med J 2003; 24: 847-854. (PMID: 14584102) [CrossRef]
- Gokhale S. Ultrasound characterization of breast masses. Indian J Radiol Imaging 2009; 19: 242-247. (PMID: 19881096) [CrossRef]
- 29. Cucci E, Santoro A, Di Gesú C, Ciuffreda M, Maselli G, Pierro A, Sallustio G. Integrated imaging of breast hamartoma: Two case reports. Breast Dis 2015; 35: 53-57. (PMID: 25061021) [CrossRef]

Can Radiologist and Pathologist Reach The Truth Together in The Diagnosis of Benign Fibroepithelial Lesions?

Gamze Durhan¹, Ömer Önder¹, Aynur Azizova¹, Jale Karakaya², Kemal Kösemehmetoğlu³, Meltem Gülsün Akpınar¹, Figen Demirkazık¹

ABSTRACT

Objective: Benign fibroepithelial lesions (BFL) lesions of the breast are various and predominantly benign, although a few can be locally aggressive. Definitive diagnosis of some BFL can be challenging from core needle biopsy (CNB). Radiological findings can help guide the management of the lesions. The aim of this study was to investigate the accuracy rate of CNB results and evaluate the radiological findings of the most common BFL according to the final excision pathology results. The secondary aim was to assess the contribution of the imaging findings to CNB results.

Materials and Methods: A retrospective review was made of 266 patients diagnosed with suspicious BFL, conventional fibroadenoma, complex fibroadenoma, cellular fibroadenoma and benign phyllodes tumor (PT). The study included 132 patients who underwent surgical excision. The radiological and histopathological findings were evaluated.

Results: While 66 patients were diagnosed with more descriptive results on CNB, the other 66 patients were diagnosed with suspicious BFL. Agreement between CNB and excisional pathology was good, when CNB provided a definite diagnosis. While conventional and complex fibroadenoma were observed to have hypo or normal vascularity, cellular fibroadenoma and PT showed hypervascularity. Oval shaped and homogeneous internal echo pattern were significantly associated with conventional fibroadenoma. A heterogeneous internal echo pattern was seen in complex fibroadenomas and PT.

Conclusion: CNB often reaches the correct diagnosis alone when it gives a definite diagnosis. The radiological findings which help in the differentiation of BFL are hypervascularity, oval shape and internal heterogeneity. More accurate results can be obtained when histopathological and radiological findings are evaluated together.

Keywords: Benign fibroepithelial lesions, fibroadenoma, phyllodes tumor, histopathological findings, radiological findings

Cite this article as: Durhan G, Önder Ö, Azizova A, Karakaya J, Kösemehmetoğlu K, Akpınar MG, Demirkazık F. Can Radiologist and Pathologist Reach The Truth Together in The Diagnosis of Benign Fibroepithelial Lesions? Eur J Breast Health 2019; 15(3): 176-182.

Introduction

Benign fibroepithelial lesions (BFL) of the breast are characterized by proliferation of both epithelial and stromal components. BFL are various and predominantly benign, although a small percentage can be locally aggressive (1). Fibroadenoma is the most common benign neoplasm among BFL. Fibroadenomas have variants including cellular and complex fibroadenoma. Complex fibroadenoma is a variant of the fibroadenoma harboring at least 1 of the following features: sclerosing adenosis, cysts, papillary apocrine metaplasia and epithelial calcifications. Cellular fibroadenoma is another variant of fibroadenoma with remarkable cellularity. These different characteristics of fibroadenoma can cause misdiagnosis histopathologically (2-4).

To distinguish between fibroadenoma and phyllodes tumor (PT) is clinically important due to different clinical management. While fibroadenomas can be followed up safely with conservative methods, surgical excision is recommended for PT. Definitive diagnosis of some of the BFL can be challenging from core needle biopsy (CNB) due to increased cellularity and complex structures. They can be upstaged to phyllodes tumor on excision pathology (5). If there is histopathological uncertainty, the World Health Organization working group proposes using the term of benign fibroepithelial neoplasm in order to avoid overtreatment (6, 7). On the other hand, National Comprehensive Cancer Network guidelines suggest excisional biopsy for palpable, large (>3 cm) and rapid growing lesions which are diagnosed as fibroadenoma or are indeterminate on CNB (8).

¹Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey

²Department of Biostatistics, Hacettepe University School of Medicine, Ankara, Turkey

³Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey

There can also be overlapping findings in the radiological diagnosis of BFL (9). However, more accurate results can be obtained when histopathological and radiological findings are evaluated together. The main aim of this study was to investigate the accuracy rate of CNB results and to evaluate the radiological findings of the most common BFL according to the final excision pathology results. The secondary aim of the study was to assess the contribution of the imaging findings to CNB results.

Material and Methods

Approval for the study was granted by the Hacettepe University Ethics Commission. Informed consent was not taken due to the retrospective nature of the study.

Patients

A retrospective review was made of 266 patients diagnosed with BFL on CNB between January 2014 and June 2018. The study included 132 patients who underwent surgical excision with a diagnosis of conventional fibroadenoma, complex fibroadenoma, cellular fibroadenoma and benign PT. As the excisional pathology results are gold standard in the diagnosis of the BFL, we excluded the 121 patients who did not undergo surgical excision. There were only 5 patients diagnosed with borderline and malignant PT. We excluded the borderline and malignant PT, because of the limited number and more aggressive nature of these lesions. Uncommon BFL including pseudoangiomatous stromal hyperplasia, lactating adenoma, adenomyoepithelioma and tubular adenoma were also excluded due to lower numbers. The total number of these patients was 8.

The patients diagnosed with suspicious fibroepithelial lesion and PT in CNB and the patients categorized as BIRADS 4B and 4C underwent surgical excision. 26 patients underwent excisional surgery due to positive family history or their own request.

Imaging

All patients underwent ultrasonography (US), 45 patients had mammography and only 8 patients had magnetic resonance imaging (MRI).

The US images were obtained using a 12 MHz linear probe on a Toshiba Aplio 400 device (Toshiba Medical Systems Corporation, Otawara, Japan). For the mammograms, standard mediolateral oblique and craniocaudal images were obtained using Seno essential mammography systems (General Electric, USA). The MRI scans were acquired with the patient in the prone position in a 1.5-Tesla MRI scanner (Signa HD, GE Medical Systems, USA) using a four-channel phased array breast coil. The imaging protocol included the following sequences: axial T2-weighted fat saturated (TR/TE 5100/90 ms, slice thickness=2 mm, flip angle 90°, matrix 256x256), axial echo-planar DWI (TR/TE 2500/72, slice thickness=3 mm, matrix 256 x 256, diffusion gradient with b values of 0 and 500 s/mm²), and axial T1-weighted fast spin echo pre-contrast MR images (TR/TE 4.3/2.1 ms, slice thickness=2 mm, flip angle 90°, matrix 512x512). Dynamic breast examination was performed after the injection of intravenous contrast material (Magnevist, Bayer Schering Pharma AG, Berlin, Germany) through the antecubital vein at a dose of 0.1 mmol/kg using a power injector (Medrad, Bayer HealthCare, Netherlands). After pre-contrast T1weighted images, the following 5 axial T1-weighted post-contrast dynamic sequences (TR/TE 4.5/2.1 ms, slice thickness=2 mm, flip angle 10°, matrix 512x512) were obtained at intervals of 90 seconds.

Pathological examination

The patients with suspicious histopathological or radiological findings underwent surgical excision. Some patients underwent surgery due to family history and their own request for surgery, although the CNB pathology results and radiological findings were benign.

All CNBs were performed under US guidance using a 14-gauge cutting needle. All needle biopsies were performed using an automated biopsy gun and at least 4 core specimens were obtained from each lesion.

The pathological reports were reviewed. The lesions with a final pathological diagnosis of conventional fibroadenoma, complex fibroadenoma, cellular fibroadenoma and benign PT were assessed.

Statistical Analysis

Mean and standard deviation were presented for continuous variables; number and proportion were presented for categorical variables. Yates' Chi-square test or Fisher Exact tests were used to examine the relationship between two categorical variables. The Kappa coefficient was obtained to assess the agreement between CNB and excisional pathology results.

A p value of 0.05 was accepted as statistically significant. Data analysis was performed by Statistical Package for the Social Sciences version 23.0 (IBM Corp., Armonk, NY, USA) software package.

Results

Clinical and histopathological data

The mean age of patients was 41±10 years and the mean size of the lesions was 19±11mm.

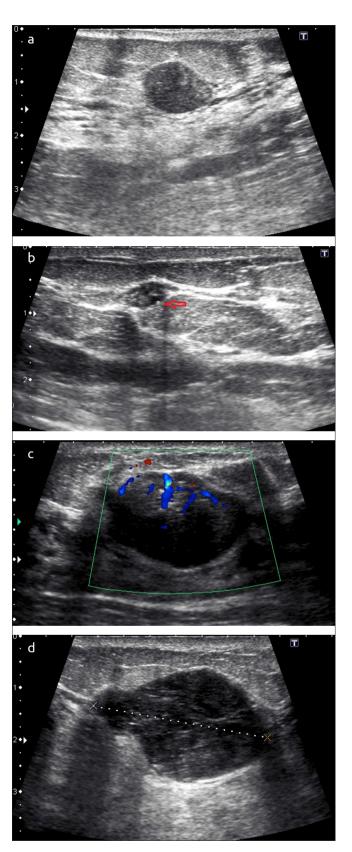
While 66 patients were diagnosed with more descriptive results as conventional fibroadenoma, complex fibroadenoma, cellular fibroadenoma, benign phyllodes on CNB, the other 66 patients were diagnosed with suspicious BFL and excision was recommended. According to the excisional pathological results, the numbers of conventional fibroadenoma, complex fibroadenoma, cellular fibroadenoma and benign PT were 64 (48.5%), 24 (18.2%), 12 (9%) and 32 (24.3%), respectively.

Although all patients diagnosed with cellular fibroadenoma were under 35 years of age, there was no statistical significance between the types of BFL and age (p=0.5) Lesion size was larger in PT than in the other BFL, but not at a level of statistical significance (p=0.3).

Radiological findings

The radiological characteristics of the lesions are shown in Table 1. Most lesions had an oval shape (75%), circumscribed margin (53%), homogeneous internal echo pattern (62.1%), hypo or normal vascularity (75.8%) and were BI-RADS 4A (85.6%) category. There was no statistically significant difference between types of BFL and the features of the margins (p=0.6), size increase (p=0.4) and BI-RADS category (p=0.3). There was no relationship between the types of BFL and MRI, and mammography findings (p>0.05 for all findings).

We analysed BIRADS category and pathology results. From 113 lesions reported as BIRADS 4A category, 58 lesions diagnosed with suspicious fibroepithelial lesion and 29 lesions diagnosed with PT in CNB. The other 26 patients underwent to the excisional surgery due to positive family history or their own request. From 17 lesions reported as BIRADS 4B category, 7 lesions diagnosed with suspicious fibroepithelial lesion and 4 lesions diagnosed with PT on core needle biopsy. There were only 2 patients categorized as BIRADS 4C. And from these two patients, one was reported as suspicious


Table 1. Imaging characteristics of lesions

Radiological Findings	n (%)
Ultrasound Features	
Shape	
Oval	99 (75.0)
Round	24 (18.1)
Irregular	9 (6.8)
Margins	
Circumscribed	70 (53.0)
Microlobulated	48 (36.4)
Indistinct	14 (10.6)
Internal echo pattern	
Homogeneous	82 (62.1)
Heterogenous	50 (37.9)
Vascularity	
Hypovascular and normal vascularity	100 (75.8)
Hypervascular	32 (24.2)
Size increase	33 (25)
Mammography Features	
Patients underwent mammography	45 (34)
No features on mammography	15 (33.3)
Asymmetric density	5 (11.1)
Mass	25 (55.5)
Calcification within the lesion	2 (4.4)
MRI Features	
Patients underwent MRI	8 (6.0)
Type 1 dynamic curve	5 (62.5)
Type 2 and type 3 dynamic curve	3 (37.5)
Homogeneous contrast enhancement	6 (75)
Heterogenous contrast enhancement	2(25)
BI-RADS	
BI-RADS 4A	113 (85.6)
BI-RADS 4B	17 (12.9)
BI-RADS 4C	2 (1.5)
MRI: magnetic resonance imaging; BI-RADS: bi and data system	reast imaging reporting

and date system

fibroepithelial lesion while the other one was reported as complex fibroadenoma.

While conventional and complex fibroadenoma have hypo or normal vascularity, cellular fibroadenoma and PT show hypervascularity on Doppler ultrasonography (p=0.0001). An oval shape (85.9%) and homogeneous internal echo pattern (57%) are significantly associated with conventional fibroadenoma (p=0.002 for shape, p=0.001 for internal echo pattern). A heterogeneous internal echo pattern is seen in complex fibroadenomas (62.5%) and PT (68.8%) (p=0.001). The significant radiological findings of BFL are shown in Table 2 and Figure 1.

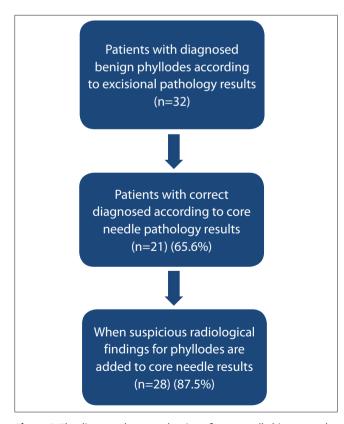

Figure 1. a-d. Oval shaped and homogeneous internal echo pattern benign fibroepithelial lesions diagnosed with conventional fibroadenoma is shown in US (a). US shows small solid lesion with heterogeneous internal echo pattern due to the millimetric cyst. It was diagnosed as complex fibroadenoma histopathologically (b). Doppler US demonstrates hypervascularity within the cellular fibroadenoma (c). Heterogenous solid lesion diagnosed with phyllodes tumor is shown in US (d).

Table 2. The significant ultrasonography findings of benign fibroepithelial lesions are given with their percentages

	Shape/ (%)/p	Internal echo patern/(%)/p	Vascularity/(%)/p
Conventional fibroadenoma (n=64)	Oval/(85.9)/0.002	Homogeneous/(57)/0.001	Hypovascular or normal/(9.8)/0.0001
Complex fibroadenoma(n=24)	Oval/(62.5)/0.1	Heterogeneous/(62.5)/0.001	Hypovascular or normal/(95.8)/0.0001
Cellular fibroadenoma(n=12)	Oval/(75)/0.1	Homogeneous/(50)/0.3	Hypervascularity/(75)/0.0001
Benign phyllodes(n=32)	Oval/(62.5)/0.1	Heterogenous/(68.8)/0.001	Hypervascularity/(56.3)/0.0001

Table 3. Agreement between core needle biopsy and excisional pathology

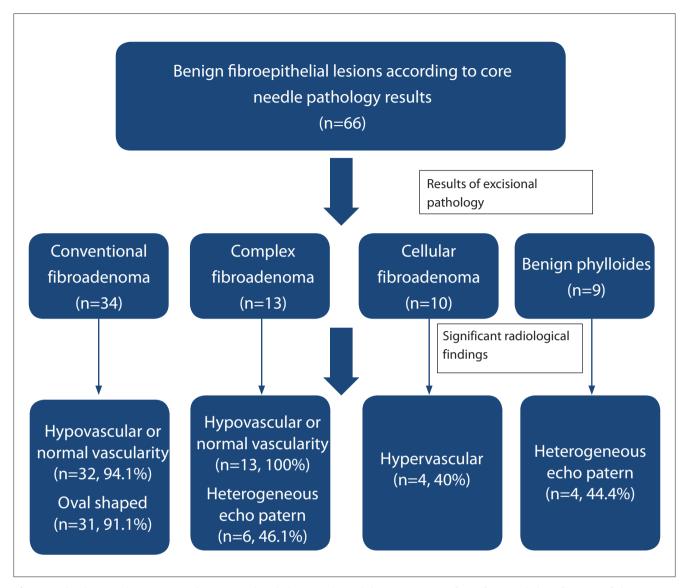
		Excisional Pathology Results			
		Conventional fibroadenoma n (%)	Complex fibroadenoma n (%)	Cellular fibroadenoma n (%)	Benign phyllodesn (%)
Core Needle	Conventional fibroadenoma (%)	19 (63.3)	1 (9.1)	0 (0)	1 (4.3)
Biopsy Results	Complex fibroadenoma (%)	1 (3.3)	9 (81.8)	0 (0)	0 (0)
	Cellular fibroadenoma (%)	0 (0)	0 (0)	1 (50)	1 (4.3)
	Benign phyllodes (%)	10 (30.4)	1 (9.1)	1 (50)	21 (91.4)
	Total n (%)	30 (100)	11 (100)	2 (100)	23 (100)

Figure 2. The diagram shows evaluation of core needle biopsy results with radiological findings in phyllodes tumors

Agreement between CNB and excisional biopsy

Agreement between CNB and excisional pathology was good (kappa=0.641 p<0.001). Agreement was evaluated in 66 patients who got a definite diagnosis in CNB and underwent surgical excision. Table 3 shows the agreement in detail.

Evaluation of core needle biopsy results with radiological findings


From 32 patients with diagnosed with PT accordingly to excisional pathology result, 21 patients got correct diagnosis in CNB at the rate of 65.6%. When statistically significant radiological findings including hypervascularity and heterogeneous internal echo pattern were added to CNB findings, additional 7 patients got accurate diagnosis although CNB could not give exact correct diagnosis. So, accuracy rate of diagnosis PT increased to 87.5% (Figure 2).

Half of the patients were diagnosed with a suspicious BFL on CNB. Figure 3 shows the excisional pathology results and the percentages of significant radiology features of the patients who could not be definitively diagnosed from CNB.

Discussion and Conclusion

The major findings of the current study are that first, CNB often reaches the correct diagnosis alone, when it gives a definite diagnosis. Second, radiological findings including oval shape, presence of vascularity and internal echogenicity of the lesions can help in the diagnosis of BFL (p<0.05). Finally, when the radiological findings and CNB are evaluated together, more accurate results can be provided than by separate evaluation.

Benign fibroepithelial lesions encompass a heterogeneous group of neoplasms exhibiting epithelial and stromal proliferation. Although most BFL are conventional fibroadenoma, PT and subtypes of fibroadenoma including cellular fibroadenoma, complex fibroadenoma are other common BFL (1, 2). Awareness of the different BFL is important because of the requirement for different management. However, the evaluation of BFL in CNB is challenging because of their heterogeneous nature. In PT, areas with marked overgrowth and stromal cellularity with leaflike stromal fronds may be present only as minor foci within a seemingly fibroadenoma. And insufficient samples including

Figure 3. The diagram demonstrates the excisional pathology results and the percentages of significant radiology features of the patients who could not get definite diagnosis on CNB

torn-cracked samples prevent the accurate diagnosis in CNB. So, adequate samples with additional sampling of the areas showing heterogeneous internal echo on US may help in diagnosis of BFL in CNB. In the current study, the agreement between CNB and excisional pathology was good, if CNB provided a definite diagnosis (kappa=0.641 p<0.001) but the CNB diagnosis was of a suspicious BFL without a definitive diagnosis in half of the patients. And, also according to the results of current study, the core biopsy showed an overestimation. Because only 2 benign phyllodes tumor were reported as fibroadenoma, while 12 fibroadenomas were reported as benign phyllodes in core needle biopsy.

In CNB, the lesion most frequently misdiagnosed as PT is cellular fibroadenoma due to its increased stromal cellularity. Cellular fibroadenoma is usually seen in young women and surgical excision is recommended because of the larger size (10). In the current study, all the patients diagnosed with cellular fibroadenoma were younger than 35 years old. Nevertheless, no statistical relationship was determined between age and cellular fibroadenoma, which could be attributed to an insufficient number of patients. Furthermore, the accuracy of the

CNB results could not be optimally evaluated due to surgical excision of most of the cellular fibroadenomas without preoperative CNB.

Complex fibroadenoma is another variant of fibroadenoma harboring one or more complex features. Previous studies have shown that complex fibroadenomas are usually smaller than other BFL and are seen in older patients (3, 4). However, in this study, no statistical significance could be determined between subtypes of BFL and age, or size. PT is usually seen in older patients than simple fibroadenomas such as complex fibroadenoma (11, 12). According to the current study results, CNB often gives the diagnosis of complex fibroadenoma and PT correctly. Evaluation of the age, size and radiological findings together may help in the diagnosis of suspicious BFL in CNB. And when there is a radio-pathological discordance, second look US and re-biopsy can be performed.

Most of the lesions in this study were categorized as BI-RADS 4A. There was no significant finding among BFL on mammography and MRI. This was probably due to the limited number of patients applied with mammography and MRI. Some previous studies have shown that high density and absence of intratumoral calcification were as-

sociated with PT on mammography (9, 13, 14) and other studies have reported that PT and other fibroadenomas could not be precisely differentiated on breast MRI (15, 16). In the current study, the features of margins and size increase could not differentiate benign fibroepithelial lesions from each other, whereas hypervascularity (p=0.0001), internal echo pattern (p=0.001) and shape (p=0.002) were able to help differentiate the different types of BFL. While conventional and complex fibroadenoma have hypo or normal vascularity, cellular fibroadenoma and PT show hypervascularity on Doppler ultrasonography. An oval shape and homogeneous internal echo pattern are significantly associated with conventional fibroadenoma. Moreover, a heterogeneous internal echo pattern is seen in complex fibroadenomas and PT. Similar to the current study results, Duman et al. (16) found hypervascularity to be associated with PT. Increased cellularity in PT and cellular fibroadenoma may be the cause of the hypervascularity seen on Doppler US. The reason for the heterogeneous internal echo pattern in complex fibroadenoma may be the complex pathological nature of it including calcification and cystic changes. Wiratkapun et al. (14) reported that PTs often showed sonographic heterogeneity, similar to the observations of the current study. This can be explained by the presence of cystic changes representing areas of focal necrosis and dilated glands (1).

Although CNB often reaches the correct diagnosis alone, it could not provide a definitive diagnosis in half the patients. When CNB gives a diagnosis of suspicious BFL, close follow-up may be selected in cases of benign radiological findings. Furthermore, when suspicious radiological findings for PT including hypervascularity and internal heterogeneity were added to the results of CNB in the current study, the diagnostic accuracy rate increased from 65.6% to 87.5%.

There are some limitations to this study. First, it was a retrospective study and the radiological findings were only assessed from the recorded images. The retrospective nature of the study limited the determination of US and Doppler US characteristics. Second, the small number of cellular fibroadenoma and the small number of masses evaluated by mammography and MRI limited the statistically significance of the results. Finally, due to the very small number of borderline, malignant PTs and uncommon benign fibroepithelial tumors including pseudoangiomatous stromal hyperplasia, lactating adenoma, adenomyoepithelioma and tubular adenoma, these were not included in the study. Therefore, the range of BFL for which the radiological and histopathological features were evaluated, was limited.

In conclusion, CNB often reaches the correct diagnosis alone when it gives a definite diagnosis (kappa= 0.641 and p<0.001). The radiological findings which can help in the differentiation of BFL are hypervascularity, oval shape and internal heterogeneity. More accurate results can be obtained when histopathological and radiological findings are evaluated together. When the suspicious radiological findings were added to the results of the CNB, the diagnostic accuracy of rate increased from 65.6 % to 87.5 %. The presence of suspicious radiological findings can predict PT, even if CNB results show fibroadenoma or suspicious BFL. Nevertheless, close follow-up may be preferred for cases with benign radiological findings in BFL.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Hacettepe University School of Medicine.

Informed Consent: Informed consent was not received due to the retrospective nature of the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - G.D., Ö.Ö.; Design - G.D., Ö.Ö.; Supervision - M.G.A., F.D.; Resources - A.A., Ö.Ö.; Materials - K.K., A.A.; Data Collection and/or Processing - J.K., K.K.; Analysis and/or Interpretation - J.K., A.A.; Literature Search - G.D., A.A.; Writing Manuscript - G.D., Ö.Ö.; Critical Review - M.G.A., F.D.; Other - G.D., Ö.Ö.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Lerwill MF. Biphasic lesions of the breast. Semin Diagn Pathol 2004; 21: 48-56. (PMID: 15074559) [CrossRef]
- Tan BY, Tan PH. A Diagnostic Approach to Fibroepithelial Breast Lesions. Surg Pathol Clin 2018; 11: 17-42. (PMID: 29413655) [CrossRef]
- Sklair-Levy M, Sella T, Alweiss T, Craciun I, Libson E, Mally B. Incidence and management of complex fibroadenomas. AJR Am J Roentgenol 2008; 190: 214-218. (PMID: 18094314) [CrossRef]
- Kuijper A, Mommers EC, van der Wall E, van Diest PJ. Histopathology of fibroadenoma of the breast. Am J Clin Pathol 2001; 115: 736-742. (PMID: 11345838) [CrossRef]
- Marcil G, Wong S, Trabulsi N, Allard-Coutu A, Parsyan A, Omeroglu A, Atinel G, Mesurolle B, Meterissian S. Fibroepithelial breast lesions diagnosed by core needle biopsy demonstrate a moderate rate of upstaging to phyllodes tumors. Am J Surg 2017; 214: 318-322. (PMID: 28057293) [CrossRef]
- Safayi S, Korn N, Bertram A, Akers RM, Capuco AV, Pratt SL, Ellis S. Myoepithelial cell differentiation markers in prepubertal bovine mammary gland: effect of ovariectomy. J Dairy Sci 2012; 95: 2965-2976. (PMID: 22612934) [CrossRef]
- Tan BY, Acs G, Apple SK, Badve S, Bleiweiss IJ, Brogi E, Calvo JP, Dabbs DJ, Ellis IO, Eusebi V, Farshid G, Fox SB, Ichihara S, Lakhani SR, Rakha EA, Reis-Filho JS, Richardson AL, Sahin A, Schmitt FC, Schnitt SJ, Siziopikou KP, Soares FA, Tse GM, Vincent-Salomon A, Tan PH. Phyllodes tumours of the breast: a consensus review. Histopathology 201; 68: 5-21. (PMID: 26768026) [CrossRef]
- National Comprehensive Cancer Network Guidelines Phyllodes Tumor (Version 2.2017). Available from: URL: https://irp-cdn.multiscreensite. com/85275e7e/files/uploaded/phyllodes%20NCCN-richtlijn%202017_ JuYqkeH1QC5mFLITnYCE.pdf.
- Yilmaz E, Sal S, Lebe B. Differentiation of phyllodes tumors versus fibroadenomas. Acta Radiol 2002; 43: 34-39. (PMID: 11972459) [CrossRef]
- Edwards T, Jaffer S, Szabo JR, Sonnenblick EB, Margolies LR. Cellular fibroadenoma on Core needle biopsy: management recommendations for the radiologist. Clin Imaging 2016; 40: 587-590. (PMID: 27317201) [CrossRef]
- Guillot E, Couturaud B, Reyal F, Curnier A, Ravinet J, Laé M, Bollet M, Pierga JY, Salmon R, Fitoussi A. Management of phyllodes breast tumors. Breast J 2011; 17: 129-137. (PMID: 21251125) [CrossRef]
- Komenaka IK, El-Tamer M, Pile-Spellman E, Hibshoosh H. Core needle biopsy as a diagnostic tool to differentiate phyllodes tumor from fibroadenoma. Arch Surg 2003; 138: 987-990. (PMID: 12963656) [CrossRef]
- Chao TC, Lo YF, Chen SC, Chen MF. Sonographic features of phyllodes tumors of the breast. Ultrasound Obstet Gynecol 2002; 20: 64-71.
 (PMID: 12100421) [CrossRef]
- 14. Wiratkapun C, Piyapan P, Lertsithichai P, Larbcharoensub N. Fibroadenoma versus phyllodes tumor: distinguishing factors in patients diagnosed with fibroepithelial lesions after a core needle biopsy. Diagn Interv Radiol 2014; 20: 27-33. (PMID: 24356293) [CrossRef]

- Wurdinger S, Herzog AB, Fischer DR, Marx C, Raabe G, Schneider A, Kaiser WA. Differentiation of phyllodes breast tumors from fibroadenomas on MRI. AJR Am J Roentgenol 2005; 185: 1317-1321. (PMID: 16247156) [CrossRef]
- Duman L, Gezer NS, Balci P, Altay C, Basara I, Durak MG, Sevinç AI.
 Differentiation between Phyllodes Tumors and Fibroadenomas Based on Mammographic Sonographic and MRI Features. Breast Care (Basel) 2016; 11: 123-127. (PMID: 27239174) [CrossRef]

Cost effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in a Middle-Income Country, Turkey: Results of a Prospective Multicenter Study

Vahit Özmen¹ , Burcu Çakar² , Erhan Gökmen², Mustafa Özdoğan³, Nilufer Güler⁴, Cihan Uras⁵, Engin Ok⁶, Orhan Demircan⁵, Abdurrahman Işıkdoğan⁷, Pınar Saip⁸

ABSTRACT

Objective: Breast cancer is a heterogenous disease, and genetic profiling helps to individualize adjuvant treatment. The Oncotype DX is a validated test to predict benefit of adjuvant systemic treatment. The aims of this study are to determine the costs of chemotherapy in government hospitals in Turkey and evaluate the cost-effectiveness of the Oncotype DX from the national insurance perspective.

Materials and Methods: A Markov model was developed to make long term projections of distant recurrence, survival, quality adjusted life expectancy, and direct costs for patients with ER+, HER2-, node-negative or up to 3 node-positive early stage breast cancer. Turkish decision impact study patient data were captured for model reference. In that study, ten academic centers across Turkey participated in a prospective trial. Of 165 patients with pT1-3, pN0-N1mic, ER-positive, and HER-2 negative tumors, 57% had low recurrence score (RS), 35% had intermediate RS, and 8% had high RS, respectively. The overall rate of change in chemotherapy treatment decisions following Oncotype DX was 33%.

Results: The cost of adjuvant chemotherapy in public hospitals was estimated at \$3.649, and Oncotype Dx test was \$5.141. Based on the cost-effectiveness analysis, Oncotype DX testing was estimated to improve life expectancy (+0.86 years) and quality-adjusted life expectancy (+0.68 QALYs) versus standard care. The incremental cost-effectiveness ratio (ICERs) of Oncotype DX was estimated to be \$7207.9 per QALY gained and \$5720.6 per LY gained versus current clinical practice.

Conclusion: As Oncotype DX was found both cost-effective and life-saving from a national perspective, the test should be introduced to standard care in patients with ER+, HER-2 negative early-stage breast cancer in Turkey.

Keywords: Early breast cancer, genetic profiling, oncotype-Dx, cost, markov model.

Cite this article as: Özmen V, Çakar B, Gökmen E, Özdoğan M, Güler N, Uras C, Ok E, Demircan O, Işıkdoğan A, Saip P. Cost effectiveness of Gene Expression Profiling in Patients with Early-Stage Breast Cancer in a Middle-Income Country, Turkey: Results of a Prospective Multicenter Study. Eur J Breast Health 2019; 15(3): 183-190.

Introduction

Invasive breast carcinoma is the most commonly seen malignancy and leading cause of cancer related death in Turkish women. An analysis of 13.240 patients in the National Breast Cancer Database established within the Turkish Federation of Breast Diseases Societies showed that 50% patients had N0 and 27% had Stage I breast cancer, respectively. Overall, 80.7% of patients had luminal molecular subtype

Despite available data on chemotherapy efficacy in locally advanced and metastatic breast cancer, it is not possible to predict who will benefit from adjuvant treatment in early stage breast cancer based on traditional clinical pathological features. The major pathological and clinical features including age, menopausal status, tumor size, histologic grade, ki 67 proliferative index, estrogen (ER) and progesteron receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression are commonly used by clinicians to guide chemotherapy treatment decisions; however, in cases with equivocal features, the decision to recommend adjuvant chemotherapy may be uncertain. Furthermore, challenges remain regarding the inter- and intra-laboratory standardization of a number of clinical risk factors.

¹Department of General Surgery, İstanbul University School of Medicine, İstanbul, Turkey

²Division of Medical Oncology, Department of Internal Medicine, Ege University School of Medicine, İzmir, Turkey

³Division of Medical Oncology, Memorial Hopital, Antalya, Turkey

⁴Division of Medical Oncology, Department of Internal Medicine, Hacettepe University Institute of Oncology, Ankara, Turkey

⁵Department of General Surgery, Acibadem University, İstanbul, Turkey

⁶Department of General Surgery, Erciyes University School of Medicine, Kayseri, Turkey

⁷Division of Medical Oncology, Department of Internal Medicine, Dicle University School of Medicine, Diyarbakır, Turkey

Bivision of Medical Oncology, Department of Internal Medicine, İstanbul University School of Medicine, İstanbul, Turkey

Table 1. Summary of changes in adjuvant therapy recommendations with Oncotype DX testing in the modelling analysis

	Initial recommendation		Post Oncotype DX net change in CT use	
Recurrence Score	HT (%)	HT+CT (%)	HT+CT (%)	
Low	30.9 (51/165)	25.5 (42/165)	-21.0	
Intermediate	11.5 (19/165)	23.6 (39/165)	1.9	
High	1.8 (3/165)	6.7 (11/165)	4.8	
Total	44.2 (73/165)	55.8 (92/165)		
CT: chemotherapy; HT: hormone therapy				

As early stage breast cancer incidence is increasing with improved cancer screening methods, with half of breast cancer cases presenting as stage pN0 in Turkey, suboptimal evaluation for treatment planning may lead to many patients unnecessarily exposed to chemotherapy and associated toxicity and may increase health expenses. Besides, patients who may derive a substantial benefit from chemotherapy to prevent distant recurrence may not receive chemotherapy.

The emergence of genomics and transcriptomics techniques and the ability to measure various genes led to the identification of tumorbiology based prognostic and predictive determination. The Oncotype DX RS is one of the best-validated prognostic assays and may identify patients who are most and least likely to derive benefit from adjuvant chemotherapy (1, 2).

The Oncotype-DX test is validated for patients with node-negative early breast cancer as well as limited node involvement (pNmic/pN1), ER(+), HER-2(-) negative breast cancer to identify whether a patient who will receive at least a five-year course of endocrine therapy is likely to derive benefit from chemotherapy. (3, 4). The validity of Oncotype DX has been demonstrated in several studies both for prognosis and prediction of adjuvant chemotherapy (5, 6).

In two different analyses from the same patient cohort from 10 academic centers in Turkey, we demonstrated that only high Ki67 (>14%) and low PR (20%) levels were correlated with high Oncotype DX-RS in multivariate analysis, and Oncotype-DX RS may further change physician decisions for adjuvant treatment (7, 8). In a Turkish Oncotype-Dx Decision Impact Study involving patients with T1-3, ER+, HER-2(-), N0-1mic breast cancer, adjuvant chemotherapy treatment recommendations of enrolled patients were collected before and after availability of the RS. Changes in treatment decisions based on the information provided by the RS were then analysed. Of 165 patients; 57% had low RS, 35% had intermediate RS, and 8% had high RS, respectively. The overall rate of change in chemotherapy treatment decisions was found to be 33%. For the most part, recommendations changed from chemotherapy plus hormonotherapy to hormonotherapy alone, resulting in 19% absolute reduction in chemotherapy use (8).

Currently Oncotype DX is not frequently used by Turkish Physicians due to its prohibitive cost for patients and also it is not currently reimbursed by the Turkish Social Security Administration. The cost-effectiveness is a matter of policy interest. Several developed countries have revealed the cost-effectiveness of testing based on analyses of the local use and impact of the test. Although the benefit was clearly established in these trials, in some European countries, Oncotype DX reimburse-

ment is limited to selected patients. The question remains as to the optimal approach to implementing Oncotype DX testing.

In this study, we aimed to evaluate the cost-effectiveness of Oncotype DX in a developing country using our patient population as a model reference.

Materials and Methods

Model overview

The model used in this analysis is generated via local adaption of a Markov model, that was developed in Microsoft Excel, based on an original model by Hornberger, to evaluate the long-term costs and clinical outcomes associated with introducing Oncotype DX testing to inform decisions about adjuvant chemotherapy for patient with ER+, node-negative or single node positive early-stage breast cancer for an analysis for England and Wales (9). The model made projections of life expectancy, quality-adjusted life expectancy and direct costs, based on recurrence rates for low, intermediate and high-risk patients as well as country-specific mortality data. The risk was adjusted by reference models as demonstrated on Table 1, 2 and 3.

The model structure is outlined in Figure 1. There are three states in the model: recurrence-free (in which all patients start the simulation), recurrence (following a distant recurrence event) and dead (following a mortality event). The model had a 1-year cycle length. The base case time horizon was set to 30 years to capture long-term recurrence risk. All patients start the simulation in the recurrence-free state. In each 1-year cycle of the simulation, patients are exposed to the risk of competing mortality and recurrence. Patients who have a mortality event transition to the dead state, who experience a distant recurrence event transition to the recurrence state occurs, where they are exposed to the risk of breast cancer mortality in each subsequent year of the simulation. All cost-analyses were analysed according to Social Security Instution of Turkey (SGK).

Clinical parameters

To ensure that the modelling analysis was in line with the standard clinical care pathways in Turkey, patients were assumed to receive standard endocrine therapy and chemotherapy regimens in line with local practices evidenced in the Turkish Oncotype-Dx Decision Impact Study and the Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer (8, 10). The model cohort age was assumed to be 49.9 years based on the mean age from Turkish Oncotype-Dx Decision Impact Study cohort (8). In this patient group, 108 patients (65.4%) had pT1 tumors, and the median tumor size was 2 cm. Only 11 (6.7%) patients had micrometastasis in axillary lymph nodes (pN1mic). The

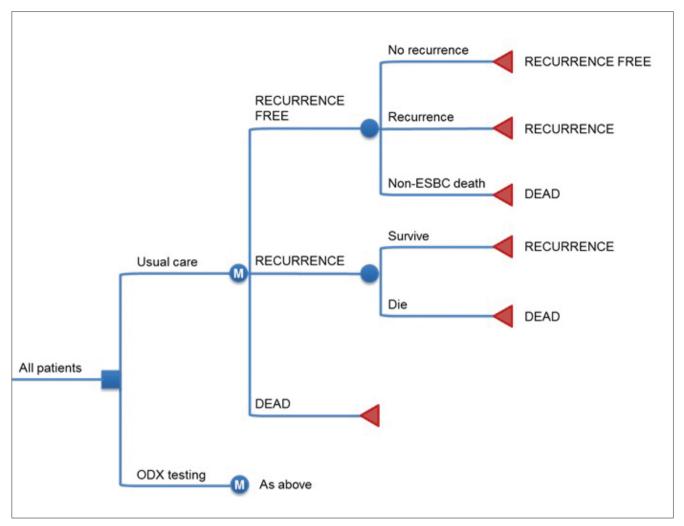


Figure 1. Overview of the Oncotype DX cost-effectiveness model structure

majority (53.5%) of the patients had a ki67 score of <20%, 60.4% patients were considered to have luminal B molecular type. The change in the chemotherapy decision between pre and post RS assay treatment plans was analysed using McNemar's test (Table 1).

In each cycle of the model, the risk of recurrence was evaluated for each simulated patient based on their RS defined category of low, intermediate or high risk as reported for the NSABP B-20 cohort (4) (Table 2). Risk was adjusted based on whether patients were receiving chemotherapy as per the initial recommendations (in the usual care arm) and based on the Oncotype DX Recurrence Score (in the Oncotype DX arm). Non-breast cancer death was captured as a competing risk in the model, based on Turkey life tables (Turkish Statistical Institute) for females in 2013 (11).For patients experiencing distant recurrence, survival was assumed to be 3.3 years (12).

Costs of treatment

In the cost-effectiveness model the costs of endocrine therapy, chemotherapy, adverse events associated with chemotherapy and the cost of distant recurrence were accounted. All costs were taken from Turkey-specific sources as Turkish lira, converted and expressed as dollars in the analysis, using the currency conversion rate as of February 2016 when the data collection was conducted. A summary of cost variables used in the model is provided in Table 3.

All the medicine costs, follow-up costs, mammogram costs and other cost items are taken from Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer (10).

The cost of endocrine therapy is incurred over 8 years, at different rates over the initial 5 years and later 3 years to reflect varying treatment patterns. For those patients receiving chemotherapy, the costs of chemotherapy and endocrine therapy are both incurred in the first year. Based on 4-6 cycles of chemotherapy, there is thus an overlap of costs of approximately 3.5 months.

Costs of all drugs related with treatment and toxicities, costs of follow-up (mammography, ultrasound, biopsy, CT-scans etc.) are taken from Turkish Cost-Effectiveness Analysis of Bahcesehir Breast Cancer Screening Program (10). The cost of chemotherapy evaluated the chemotherapy regimens, number of cycles, doses of chemotherapeutics, concomitant medications used to prevent or treat adverse events, diagnostics etc; the frequency and duration. Adverse events associated with chemotherapy; the cost of screening, diagnostics, treatment and follow-up for adverse events associated with treatment were based on the Turkish Oncotype-Dx Decision Impact Study cohort (8).

Risk of recurrence associated with endocrine therapy and relative risk reduction associated with chemotherapy were both taken from the Paik et al. (4) NSABP B-20 study of Oncotype DX. Local recurrences

Table 2. Summary of clinical variables in the cost-effectiveness modelling analysis

Variable	P	Reference	
Age (years)	49.9	Turkish Oncotype-Dx Decision Impact Study8	
Net change in chemotherapy use with low RS (%)	-20.9	Holt et al. 201113	
Net change in chemotherapy use with intermediate RS (%)	1.90	Holt et al. 201113	
Net change in chemotherapy use with high RS (%)	4.76	Holt et al. 201113	
10-year risk of recurrence (low RS) on HT (%)	3.20	Paik et al. 20063	
10-year risk of recurrence (intermediate RS) on HT (%)	9.10	Paik et al. 20063	
10-year risk of recurrence (high RS) on HT (%)	39.5	Paik et al. 20063	
RRR with chemotherapy (low RS) (%)	0	Assumed based on Paik et al. 20063	
RRR for chemotherapy (intermediate RS) (%)	39.0	Paik et al. 20063	
RRR for chemotherapy (high RS) (%)	74.0	Paik et al. 20063	
Post-recurrence survival (years)	3.3	Thomas et al. 200912	
Mortality rates	-	TÜİK (2013)11	
HT: hormone/endocrine therapy; RRR: relative risk reduction; RS: Recurrence Score			

Table 3. Summary of cost variables in the cost-effectiveness modelling analysis

Item	Mean cost (USD)	Reference
Oncotype DX test	5141	Genomic Health Ltd. Turkey branch
Endocrine therapy (years 1–5)	256.5	Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer
Endocrine therapy (years 6–8)	289.6	Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer
Chemotherapy	1436	Turkish Oncotype-Dx Decision Impact Study
Distant recurrence (monthly)	98.08	Turkish Oncotype-Dx Decision Impact Study and Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer
Chemotherapy adverse events	468.5	Turkish Oncotype-Dx Decision Impact Study

are not captured in the model. The cost of recurrence was generated from Bahcesehir Breast Cancer Screening Program (11).

Rate of non-cancer related death is taken from Turkish life-tables.

Quality of life

Quality of life utility scores were based on the published literature. Patients that were in the recurrence-free state and in the recurrence state accrued utility scores. Health utility scores range from death (0) to perfect health (1) and quantify the particular health situation. Published utility scores were used, with a disutility of 0.07 was applied to capture the health-related QALY (14). and annual utility scores of 0.60 and 0.78 were applied for patients with and without recurrence respectively (15, 16) Health utility associated with one year in the recurrence free state was assumed to be the same during and after endocrine therapy (16).

Endocrine therapy costs

In the model, all endocrine regimens were considered, consistent with current practices in Turkey: tamoxifen for 5 years, AI for 5 years, tamoxifen and AI sequential use and extended adjuvan treatment beyond 5 years.

The probability of treatment with each regimen was derived from the Turkish Cost-Effectiveness Analysis of Screening in Breast Cancer, with pharmacy costs for all interventions, follow up and mammograms were taken from the SGK Appendixes. In the model the annual per patient cost of treatment and follow up was calculated to be \$256.5 for the first 5 years and \$289.6 for years 5-8.

Adverse event rates and costs for endocrine therapy were not included in the model.

Chemotherapy costs and adverse events

The chemotherapy regimens, number of cycles, doses of chemotherapeutics, concomitant medications used to prevent or treat adverse events and diagnostic tests etc were taken from Turkish Oncotype-Dx Decision Impact Study cohort.

Chemotherapy-related adverse event rates were generated from Turkish Oncotype-Dx Decision Impact Study cohort (Table 4).

The majority of costs associated with chemotherapy are due to adverse event and monitoring rather than the acquisition costs of chemotherapy agents.

Table 4. Frequencies and costs of chemotherapy-related adverse events

	Maximum freq	Maximum frequency in various chemotherapy regimens (% per cycle) Cost per event (USD)			
Adverse event	Grade 3	Grade 4	Grade 3	Grade 4	
Anaemia	12.9%	21.0%	477.57	920.94	
Neutropenia	36.5%	19.4%	391.05	393.12	
Febrile neutropenia	32.8%	5.9%	1475.55	2099.04	
Infection	8.7%	4.6%	615.58	1707.98	
Thrombocytopenia	8.0%	1.4%	77.75	155.51	
Nausea/vomiting	39.4%	12.5%	80.69	412.55	
Diarrhea	25.1%	50.3%	63.0	413.08	
Motor neuropathy	8.0%	0%	230.62	308.03	
Cardiac toxicity	8.0%	2.0%	71.42	615.9	

Table 5. Summary of cost-effectiveness results for the base case analysis

	Usual care	Oncotype DX testing	Difference
Cost	\$3649.3	\$8568.6	\$4919.3
Life Expectancy (years)	24.84 LY	25.70 LY	0.86 LY
Quality-Adjusted-Life Expectancy (QALYs)	19.26 QALY	19.94 QALY	0.68 QALY
ICER (USD per life year gained)	\$5720.6 per LY gained		
ICER (USD per QALY gained)	\$7207.9 per QALY gained		
ICER: incremental cost-effectiveness ratio; QALYs: quality-adjusted life years; LYs: life years			

The total cost of chemotherapy drugs, administration and monitoring was \$1436.07 (\$507.7+\$432.3+\$495.9).

Sensitivity analyses

A series of one-way sensitivity analyses were performed to identify key drivers of model outcomes. Most clinical and cost parameters inputs the model were varied by +/- 25%. ICERs were reported for all one-way sensitivity analyses.

Results

Base-case analysis

Oncotype DX was projected to cost an additional \$1.492 per patient compared with current clinical practice over a 30-year time horizon (\$5.141 versus \$3.649) (Table 5). The increase in costs was associated with an improvement in life expectancy of 0.86 years (24.84 years versus 25.70 years) and an increase in quality-adjusted life expectancy of 0.68 QALYs (19.26 QALYs versus 19.94 QALYs). The incremental cost-effectiveness ratio (ICERs) was estimated to be \$7207.9 per QALY gained and \$5720.6 per LY gained for Oncotype DX versus current clinical practice in Turkey.

Sensitivity analyses

One-way sensitivity analysis showed that the base case outcomes were most sensitive to variation in patient age, the cost of Oncotype DX testing and the change in chemotherapy recommendations for low risk patients (Table 6). Increasing the baseline age for patients in the simulation by 25% increased the ICER for Oncotype DX testing versus

current care to \$7971.72 per LY gained. This was due to competing mortality, which meant that patients were not alive long enough to accumulate the full benefit of Oncotype DX testing. In contrast, reducing the baseline age improved the cost-effectiveness of Oncotype DX (\$5213.7 per LY gained).

Discussion and Conclusion

Contrary to developed countries, the rate of breast cancer incidence and mortality has been increasing in Turkey and other developing countries due to changing life style, ageing, increase in population size and mammography screening (17). Breast cancer incidence has more than doubled in last two decades in Turkey (1). In our breast cancer registry database, nearly half of the patients had node negative disease and 76.9% had ER positive breast cancer at diagnosis, making these patients good candidates for molecular testing to potentially spare them from unnecessary adjuvant chemotherapy (1). Overtreatment is a big problem due to chemotherapy toxicity and its cost to breast cancer patients (18). Gene expression profiling assays may provide an emerging paradigm to predict chemotherapy benefit based on expression levels of specific tumors. Several multigene assays are currently available for early breast cancer patients, of which Oncotype DX has the most compelling evidence of adding value to standard prognostic factors regarding the benefit of adjuvant chemotherapy for patients with early breast cancer (2).

The MINDACT trial revealed that Mammaprint (70 gene signature test) may identify subsets of patients who have a low likelihood of

Table 6. Summary of one-way sensitivity analysis results

	ICER(\$perLYgained) for Oncotype DX testing versus usual care	
Parameter/scenario	-25%	+25%
Base case	5720.6	
Cohort		
Age	5213.7	7971.7
Cost		
Cost of chemotherapy treatment	5780.3	5661.0
Cost of recurrence	5725.5	5715.8
Cost of Oncotype DX testing	4226.2	7215.5
Clinical parameters		
Post-recurrence survival	5705.1	5736.5
Net change in the use of chemotherapy in the low Recurrence Score group	8521.7	4330
Net change in the use of chemotherapy in the intermediate Recurrence Score group	5742.4	5699.6
Net change in the use of chemotherapy in the high Recurrence Score group	5836.8	4615.8
ICER: incremental cost-effectiveness ratio		

distant recurrence despite high-risk clinical features. In this trial, 6693 women, approximately 80 percent of whom had lymph node-negative disease, underwent risk assessment by clinical criteria (using Adjuvant! Online) and by the 70-genetic profile. Patients with discordant clinical and genomic predictions were randomly assigned to receive or not receive adjuvant chemotherapy. Among patients in the intention-to-treat population who had a high clinical risk of recurrence but a low risk by Mammaprint, a non-significant benefit of chemotherapy with respect to distant metastasis-free survival (DMFS) and a significant benefit of chemotherapy with respect to DFS were seen (19).

The TAILORx trial was designed to determine whether Oncotype DX that analyzes the expression of genes that are associated with risk of recurrence among women with early stage breast cancer could be used to assign patients to the most appropriate treatment choice. In the lowest risk group, the TAILORx trial provided prospective evidence that patients with RS 0-10 may be spared chemotherapy. Among these patients who were uniformly treated with ET, rates of distant recurrence at 5 and 9 years were <1% and 3% respectively. Furthermore, adjuvant endocrine therapy and chemoendocrine therapy was shown to have similar efficacy in women with hormone-receptor-positive, HER2-negative, axillary node-negative breast cancer who had a midrange 21-gene recurrence score (RS 11-25), although benefit of chemotherapy was found in some women 50 years of age or younger (20).

The precision medicine achievable via the use of molecular analysis for early breast cancer patients has been shown to change treatment recommendations. Oncotype DX testing was associated with a notable change in treatment recommendations based on the data reported by Holt et al. (13), with approximately half of all patients originally recommended chemotherapy being recommended endocrine therapy after Oncotype DX testing. In our study, overall adjuvant treatment decisions changed for 33% of patients after Oncotype Dx RS results were discussed in multidisciplinary tumor conference.

The present study is the first multicenter analysis to demonstrate cost-effectiveness of Oncotype DX in Turkey using a Markov model. Real-world patient data was used in the model based on the Turkish Oncotype-Dx decision impact study (8).

In several developed countries, Oncotype DX cost-effectiveness has been demonstrated in the early stage breast cancer setting. All studies concluded that Oncotype DX has an ICER less than \$100,000 per QALY, however the results were disparate with each other (21).

A study which looked at use of the test in a community "real-world setting," found that the likely cost-effectiveness ratio for Oncotype DX testing was higher than the ratios for the most commonly accepted diagnostic and preventive interventions. Their simulation model compared 25-year incremental costs and quality-adjusted lifeyears (QALYs) for Oncotype DX use in the community from 2005 to 2012 with costs and QALYs of usual care in the time period before testing (2000 to 2004). The patients who underwent testing were younger and were most likely to have stage 1 than stage 11 disease. Patients who underwent testing and who were younger than age 50 years had lower chemotherapy rates than patients in the same age group who were not tested (53.0% vs 63.6%). In contrast, older patients who were tested had higher rates of chemotherapy compared with the untested cohort (age 50 to 64 years: 36.5% vs 30.8%; age \geq 65 years: 17.6% vs 8.2%) (22).

In a recent analysis reviewing multiple clinical studies simulation models, demonstrated that cost-effectivity studies has a wide range of heterogenity in terms of model structure. Some studies did not use the real-world RS distributions and rely on database, some did not evaluate the patients' risk status independent of Oncotype DX. When cost of chemotherapy were used in simulation models, treatment related toxicity were ignored in some studies. Despite the heterogenity of these trials, the simulation model revealed that the problematic issues that were identified in the analyses do not change the conclusion that

Oncotype DX is cost-effective for the clinically intermediate or highrisk group but not for the clinically low-risk groups (21).

Cost-effectiveness analysis (CEA) is increasingly important in public health decision-making especially in low- and middle-income countries. When cost-effectiveness is evaluated for developing countries, willingness to pay may be at lower ICER thresholds, with many health interventions deemed cost-effective but not accepted as affordable by local authorities. This multicenter prospective trial showed that Oncotype DX is cost-effective and improves QALY in a developing country model.

By leading to changes in adjuvant chemotherapy decision and modifying long-term risk of distant recurrence, Oncotype DX was projected to improve life expectancy (+0.86 years) and quality-adjusted life expectancy (+0.68 QALYs) versus standard care. The incremental cost-effectiveness ratio (ICERs) of Oncotype DX was estimated to be \$7207.9 per QALY gained and \$5720.6 per LY gained versus current clinical practice. Sensitivity analysis showed that the cost-effectiveness of Oncotype DX testing was not sensitive to variations in several clinical and economic parameters. In all sensitivity analyses, Oncotype DX was associated with ICERs in the range that would be considered cost-effective by commonly quoted standards.

Oncotype DX was estimated to improve quality-adjusted life expectancy versus standard care, due to chemotherapy avoidance in low-risk patients in addition to survival benefits in high-risk patients. In this analysis, data of patients who were recruited from state hospital and academic centers were taken into account where all costs are reimbursed by general health insurance. However, there are considerable amount of patients who apply to private hospitals and take the Oncotype DX with their personal expense. If it was possible to add these patients' data to the analysis, we believe that the cost-effectiveness of the test would be more favorable.

Oncotype DX provides additional information to improve personalized chemotherapy treatment in early stage breast cancer patients and changed adjuvant chemotherapy treatment decisions in 33% of patients. The test was found cost-effective from a national perspective, with improvements in quality of life and may be introduced to routine clinical practice in patients with ER+, HER-2 negative early-stage breast cancer in Turkey.

Ethics Committee Approval: Ethics committee approval was received for this study from the Ethics Committee of İstanbul University İstanbul School of Medicine (2014/800; 09.05.2014-09).

Informed Consent: Written informed consent was obtained from patient who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - M.Ö., O.D., N.G.; Design - V.Ö., O.D.; Supervision - E.G., E.O.; Resources - V.Ö., A.I., E.O.; Materials - P.S., N.G.; Data Collection and/or Processing - B.Ç., M.Ö.; Analysis and/or Interpretation - C.U., E.O.; Literature Search - A.I., B.Ç.; Writing Manuscript - B.Ç., E.G.; Critical Review - V.Ö., B.Ç., E.G., M.Ö., N.G., C.U., E.O., O.D., A.I., P.S.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Ozmen V. Breast Cancer in Turkey: Clinical and Histopathological Characteristics (Analysis of 13.240 Patients). J Breast Health 2014; 10: 98-105. (PMID: 28331652) [CrossRef]
- Markopoulos C, van de Velde C, Zarca D, Ozmen V, Masetti R. Clinical evidence supporting genomic tests in early breast cancer: Do all genomic tests provide the same information? Eur J Surg Oncol 2017; 43: 909-920. (PMID: 27639633) [CrossRef]
- Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817-2826. (PMID: 15591335) [CrossRef]
- Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24: 3726-3734. (PMID: 16720680) [CrossRef]
- 5. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 2010; 11: 55-65. (PMID 20005174) [CrossRef]
- Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, Quinn E, Dunbier A, Baum M, Buzdar A, Howell A, Bugarini R, Baehner FL, Shak S. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 2010; 28: 1829-1834. (PMID: 20212256) [CrossRef]
- Özmen V, Atasoy A, Gökmen E, Özdoğan M, Güler N, Uras C, Ok E, Demircan O, Işıkkdoğan A, Cabioğlu N, Şen F, Saip P. Correlations Between Oncotype DX Recurrence Score and Classic Risk Factors in Early Breast Cancer: Results of A Prospective Multicenter Study in Turkey. J Breast Health 2016; 12: 107-111. (PMID: 28331745) [CrossRef]
- Ozmen V, Atasoy A, Gokmen E, Ozdogan M, Guler N, Uras C, Ok E, Demircan O, Isikdogan A, Saip P. Impact of Oncotype DX Recurrence Score on Treatment Decisions: Results of a Prospective Multicenter Study in Turkey. Cureus 2016; 8: e522. (PMID: 27081583) [CrossRef]
- Hornberger J, Cosler LE, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 2005; 11: 313-324. (PMID: 15898220)
- Özmen V, Gürdal SÖ, Cabioğlu N, Özcinar B, Özaydın AN, Kayhan A, Arıbal E, Sahin C, Saip P, Alagöz O. Cost-Effectiveness of Breast Cancer Screening in Turkey, a Developing Country: Results from Bahçeşehir Mammography Screening Project. Eur J Breast Health 2017; 13: 117-122. (PMID: 28894850) [CrossRef]
- 11. TÜİK, Yaş ve cinsiyete göre yaşam tabloları, 2013.
- Thomas RJ, Williams M, Marshall C, Glen J, Callam M. The total hospital and community UK costs of managing patients with relapsed breast cancer. Br J Cancer 2009; 100: 598-600. (PMID: 19223909) [CrossRef]
- 13. Holt SDH, Pudney D, Rolles M. Results from a prospective clinical study on the impact of Oncotype DX* on adjuvant treatment decision and risk classification by Nottingham Prognostic Index(NPI) and Adjuvant! Online. Poster Presentation at the 12th St. Gallen International Breast Cancer Conference. 16-19 March, 2011. St. Gallen, Switzerland. [CrossRef]
- Peasgood T, Ward SE, Brazier J. Health-state utility values in breast cancer. Expert Rev Pharmacoecon Outcomes Res 2010; 10: 553-566. (PMID: 20950071) [CrossRef]

- Milne RJ, Heaton-Brown KH, Hansen P, Thomas D, Harvey V, Cubitt A. Quality-of-life valuations of advanced breast cancer by New Zealand women. Pharmacoeconomics 2006; 24: 281-292. (PMID: 16519549) [CrossRef]
- Conner-Spady BL, Cumming C, Nabholtz JM, Jacobs P, Stewart D. A longitudinal prospective study of health-related quality of life in breast cancer patients following high-dose chemotherapy with autologous blood stem cell transplantation. Bone Marrow Transplant 2005; 36: 251-259. (PMID: 15937502) [CrossRef]
- Özmen V. A Patient Advocacy Group Summit, Cancer Care in Turkey and The Society of Breast Health. Eur J Breast Health 2018; 14: 1-4. (PMID: 29322111) [CrossRef]
- Katz SJ, Morrow M. Addressing overtreatment in breast cancer: The doctors' dilemma. Cancer 2013; 119: 3584-3588. (PMID: 23913512)
 [CrossRef]
- Cardoso F, Van't Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008; 26: 729-735. (PMID: 18258980) [CrossRef]
- 20. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 2018; 379: 111-121. (PMID: 29860917)
- Wang SY, Dang W, Richman I, Mougalian SS, Evans SB, Gross CP. Cost-Effectiveness Analyses of the 21-Gene Assay in Breast Cancer: Systematic Review and Critical Appraisal. J Clin Oncol 2018; 36: 1619-1627. (PMID 29659329) [CrossRef]
- Chandler Y, Schechter CB, Jayasekera J, Near A, O'Neill SC, Isaacs C, Phelps CE, Ray GT, Lieu TA, Ramsey S, Mandelblatt JS. Cost Effectiveness of Gene Expression Profile Testing in Community Practice. J Clin Oncol 2018; 36: 554-562. (PMID 29309250) [CrossRef]

Intramammary Nodal Metastasis from Ovarian Cancer: A Case Report

Omar Hamdy¹ , Farida A Shokeir² , Gehad A Saleh³ , Marwa MA Zaki²

ABSTRACT

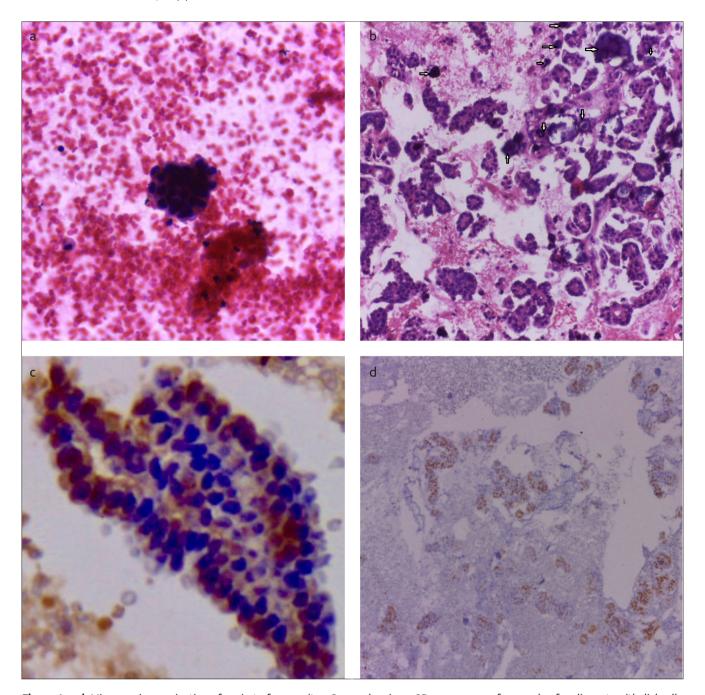
Intramammary metastasis from ovarian cancer is rare. It is usually associated with poor prognosis. We present a 56-year-old female with advanced ovarian cancer in whom a metastatic intramammary lymph node was discovered after finishing the first line of neoadjuvant chemotherapy.

Keywords: Breast neoplasms, ovarian cancer, metastasis, lymph nodes

Cite this article as: Hamdy O, Shokeir FA, Saleh GA, Zaki MMA. Intramammary Nodal Metastasis from Ovarian Cancer: A Case Report. Eur J Breast Health 2019; 15(3): 191-195.

Introduction

Breast metastasis from solid tumors is a rare event. Melanoma, lung cancer, soft tissue sarcoma and ovarian carcinoma are the most common primaries. Intramammary metastases do not show a unique clinical or radiological pattern. Yet, accurate diagnosis and differentiation from primary breast tumors is very important to choose the appropriate treatment strategy and to avoid unnecessary interventions (1).

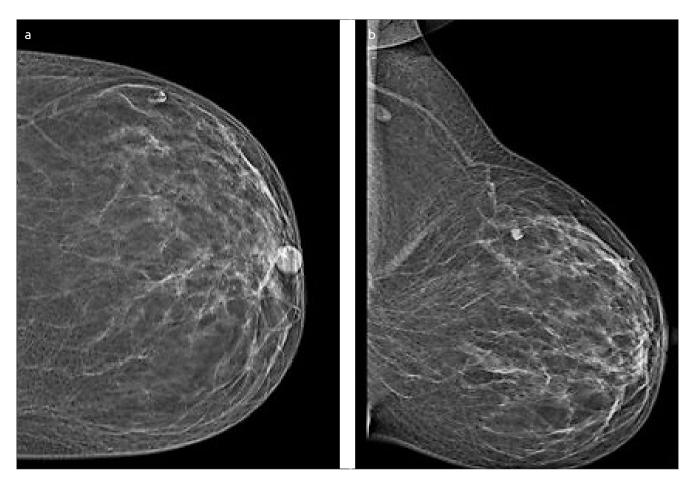

Case Presentation

A 56-year-old female, diabetic & hypertensive, with previous surgical history of appendectomy, complained from progressive abdominal enlargement. Pelvi-abdominal ultrasonographic (US) evaluation revealed bilateral adnexal neoplastic soft tissue masses with internal vascularity. The right one was seen inseparable from the surrounding intestinal loops, it measured 8x13 cm. The left one was seen inseparable from the uterus with the possibility of infiltration, it measured 10x14 cm. Multiple hyperechoic subcapsular hepatic peritoneal deposits were detected, the largest one measured 2.3 cm in diameter. Also amalgamated intestinal loops with sheet like omental cake and moderate ascites were observed. Serum carbohydrate antigen 125 (CA 125) value was 195 U/mL. Post contrast Magnetic Resonance Imaging (MRI) of the abdomen and pelvis showed mildly enlarged liver with non-enhanced focal lesion at segment VII of right lobe, it measured 1.5 cm in diameter. Large heterogeneously enhanced pelvic soft tissue mass was seen infiltrating the uterus and compressing posterior wall of the urinary bladder as well as recto-sigmoid colon with no line of separation in-between, it measured 10.5x14.5x10.5 cm in APXTRXH respectively. Another similar soft tissue mass was seen at right lower abdominal cavity, compressing and displacing surrounding intestinal loops, it measured 8x13x10 cm. Multiple variable sized enhanced nodular and sheet-like peritoneal deposits were seen scattered in the abdomen as well, the largest deposit measured 3.5x4 cm. Neoplastic lower para aortic and left iliac lymph nodes were also noted, the largest lymph node diameter was 2.5cm. The patient underwent US guided aspiration from the ascitic fluid. Microscopic examination of the aspirated sample (Figure 1) revealed clusters of rounded or hyperchromatic nuclei with overlapping in background of Red Blood Cells (RBCs). Some cells exhibited cytoplasmic vacuoles. The cell block revealed papillary & acinar structures with thin vascular connective tissue and covered by cuboidal cells showing rounded vesicular nuclei. Psammoma bodies were seen as well. This led to the diagnosis of metastatic papillary carcinoma mostly of ovarian origin. Immunohistochemical staining (IHC) showed positive nuclear staining for Estrogen Receptor (ER), negative staining for tumor protein P53, and focal nuclear positivity for Wilms tumor gene product (WT1). These results confirmed the diagnosis of metastatic papillary carcinoma of ovarian origin. The patient received 6 Taxol & Carboplatin cycles as neoadjuvant therapy with stationary course of the disease. Upon breast sonomammographical evaluation (Figure 2), the left

¹Surgical oncology unit, Oncology Center Mansoura University (OCMU), Mansoura, Egypt

²Department of Pathology, Mansoura University School of Medicine, Mansoura, Egypt

³Department of Radiology, Mansoura University School of Medicine, Mansoura, Egypt


Figure 1. a-d. Microscopic examination of aspirate from ascites. Smear showing a 3D appearance of a morula of malignant epithelial cells (Hx&E, x400) (a). Highly cellular cell block showing papillary structures lined by malignant epithelial cells with evident Psammoma bodies (marked by arrows) (Hx&E, x200) (b). Cytoplasmic and focal nuclear staining of tumor cells for WT1 (x400) (c). Nuclear ER staining of tumor cells (x100) (d)

breast showed an oval hypoechoic lesion with foci of calcification measuring 11x4.3 mm at 12 o'clock in zone C, which was reported to be likely a suspicious intramammary lymph node. US guided core needle biopsy from the breast lesion was performed. Microscopic examination (Figure 3) revealed cores of lymphoid tissue showing infiltration by papillary structures covered by atypical epithelial cells showing mild degree of atypia and pleomorphism. IHC studies for WT1, Cytokeratin 7 (CK7) and ER showed positive reaction in atypical cells, while (Progesterone Receptor) PR, mammaglobin and P53 showed negative reaction in tumor cells. This supported the diagnosis of metastatic ovarian carcinoma. The patient was prepared for receiving second line

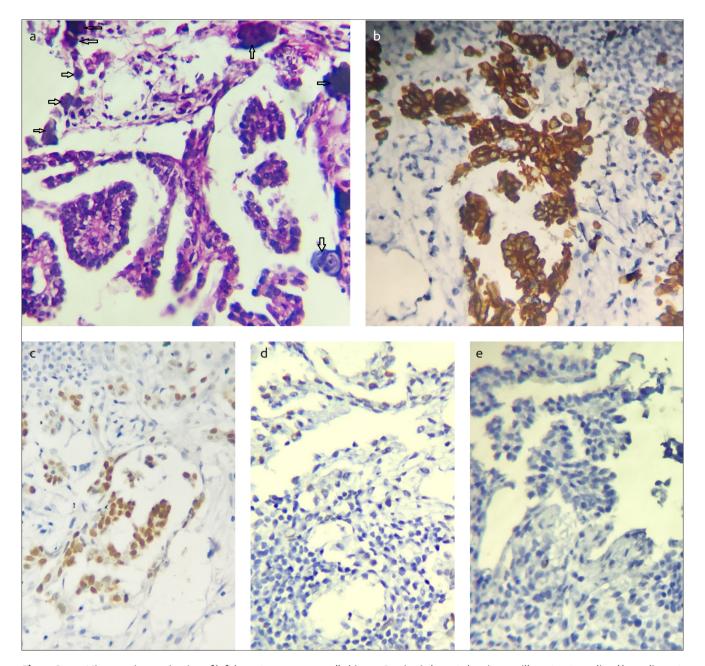
neoadjuvant therapy. Informed consent was obtained from the patient reported in this study.

Discussion and Conclusion

Secondary tumors to the breast are rare. They account to 0.2-2% of all breast neoplasms. The most common primary sites are contralateral breast, melanoma, lung cancer and ovarian cancer. Diagnosis of intramammary metastasis is a diagnostic challenge as it may resemble primary breast tumors clinically, radiologically and even pathologically (2-5). Proper evaluation and accurate pathological examination is recommended to avoid the possibility of unneeded breast intervention (e.g., mastectomy) (4, 6-10).

Figure 2. a, b. Left breast mammogram. Craniocaudal and mediolateral (a, b) mammogram of asymptomatic 56-year-old patient shows oval dense indistinct mass at upper outer quadrant of the left breast, no related architectural distortion nor overlying skin thickening. Oval left axillary LN with lucent center

Most of intramammary metastasis present as palpable breast swellings. Only about 14% are discovered by radiological evaluation –such as our presented case. The majority of these tumors present as solitary masses but 8-25% present as multifocal or bilateral breast masses (3) There are no specific radiologic criteria for intramammary metastasis which may be misinterpreted as benign or malignant primary breast masses on ultrasound or mammography. The most common pattern of presentation after being incidentally discovered during breast radiological evaluation is the presence of well-defined, hypoechoic oval or rounded mass with regular margins that does not show microcalcifications, speculations or posterior shadowing. (1, 3, 5)


Pathologically, there are no specific criteria for diagnosis of such cases, especially in the absence of well-known history of prior malignancy. Yet, common histologic findings could be identified such as the presence of peritumoral fibrous pseudo-capsule and the absence of in situ component (4).

Incidence of intramammary metastasis from ovarian carcinoma is very rare. It constitutes about 0.03%-0.6% of all breast tumors. It usually occurs 2 years after the primary presentation —In our patient, it was discovered 8 months after the initial presentation. The most common histologic subtype is ovarian serous carcinoma. Those patients usually present with advanced stage with heavy peritoneal infiltration — like the case presented in this report. Eighty-five percent of ovarian serous tumors are limited to the peritoneal cavity. The liver, lung and pleura are the most common site for metastases followed by the spleen, cen-

tral nervous system, bone and skin. Yet, breast metastasis from ovarian carcinoma is associated with poorer prognosis with reported short term survival after the incidence of metastasis (1, 7-9, 11).

Accurate analysis of clinical, radiological and pathological features is required to differentiate such patients from those with primary breast carcinoma associated with Krukenburg ovarian tumors due to overlapping of pathologic features. Histopathological classification of breast secondary tumors and the differentiation from primary breast neoplasms is not an easy job and is based on the interpretation of both morphological and IHC features. The majority of intramammary metastases are characterized by the presence of papillary clusters and solid areas with slit-like spaces. Those spaces are composed of cells showing marked nuclear atypia. The adjacent breast tissue shows no pathological changes or intraductal component. IHC plays a very important role in such scenarios especially WT-1, the Wilms tumor gene product -which shows nuclear expression in about 95% of serous papillary carcinomas and only in less than 10% of breast cancers-, Gross cystic disease fluid protein (GCDFP-15), Paired-box gene 8 (PAX8) and mesothelin, which is expressed in more than 90% of ovarian serous papillary carcinoma. However, it is weakly expressed in 3 to 14% of primary breast malignancies (4, 7, 9, 11, 12)

It is to be noted that breast and epithelial ovarian cancers share some similar hereditary and risk factors which can explain the co-incidence of primary breast and ovarian cancers. That is why patients with epithelial ovarian cancer are usually subjected to thorough physical, radio-

Figure 3. a-e. Microscopic examination of left breast mass core needle biopsy. Section in breast showing papillary structures lined by malignant epithelial cells, evident psammoma bodies in upper right (marked by arrows) (x400 Hx&E) (a). Cytoplasmic positivity of tumor cells in breast for ck7 (x400) (b). Nuclear staining of tumor cells for WT1 (x400) (c). Negative tumor cells for mammaglobin (x400) (d, e)

logical & serological investigations raising the possibility for detection any breast masses (8).

In conclusion, intramammary metastasis from ovarian cancer is a rare condition that carries a poor prognosis. Despite having no pathognomonic clinical or radiological characteristics, thorough analysis of clinical, radiological and pathological data is required so as not to miss the diagnosis.

Informed Consent: Written informed consent was obtained from patientspatient who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - O.H.; Design - O.H.; Supervision - M.Z.; Resources - O.H., F.S., G.S.; Materials - O.H., F.S., G.S.; Data Collection and/or Processing - O.H., F.S., G.S.; Analysis and/or Interpretation - O.H., F.S., G.S.; Literature Search - O.H., F.S.; Writing Manuscript - O.H., F.S., G.S.; Critical Review - M.Z.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

 Antuono L, Angela F, Luca N, Giovanni M, Enrico C. Breast metastasis from ovarian cancer: A case report. Radiol Case Rep 2018; 13: 1166-1169. (PMID: 30233752) [CrossRef]

- Della Corte L, Giampaolino P, Fabozzi A, Cieri M, Zizolfi B, Morra I, Bifulco G. Breast metastasis two years after pelvic surgery and adjuvant chemotherapy for serous ovarian cancer. Gynecol Endocrinol 2019; 35: 211-213. (PMID: 30449229) [CrossRef]
- Cimino-Mathews A, Harvey SC, Argani P. Metastases to the Breast. In: Shin SJ, editor. A Comprehensive Guide to Core Needle Biopsies of the Breast [Internet]. Cham: Springer International Publishing; 2016. p. 819-51. Available from: URL: https://doi.org/10.1007/978-3-319-26291-8_24. [CrossRef]
- DeLair DF, Corben AD, Catalano JP, Vallejo CE, Brogi E, Tan LK. Nonmammary metastases to the breast and axilla: a study of 85 cases. Mod Pathol 2013; 26: 343-349. (PMID: 23174933) [CrossRef]
- Surov A, Fiedler E, Holzhausen H-J, Ruschke K, Schmoll H-J, Spielmann R-P. Metastases to the Breast from Non-mammary Malignancies: Primary Tumors, Prevalence, Clinical Signs, and Radiological Features. Acad Radiol 2011; 18: 565-574. (PMID: 21393030) [CrossRef]
- Luo Y, Xu B, Li Q, Zhang P, Yuan P, Wang J, et al. Clinicopathological features and prognosis of metastases to the breast from extramammary solid tumors. Zhonghua Zhong Liu Za Zhi 2014; 36: 453-456. (PMID: 25241789)
- Demir L, Erten C, Yigit SC, Can A, Dirican A, Bayoglu V, Kucukzeybek Y, Somali I, Tarhan MO. Intramammary lymph node metastasis

- in a patient with ovarian carcinoma and a brief review of the literature. Contemp Oncol (Pozn) 2012; 16: 108-110. (PMID: 23788864) [CrossRef]
- 8. Karam AK, Stempel M, Barakat RR, Morrow M, Gemignani ML. Patients with a history of epithelial ovarian cancer presenting with a breast and/or axillary mass. Gynecol Oncol 2009; 112: 490-495. (PMID: 19101713) [CrossRef]
- Recine MA, Deavers MT, Middleton LP, Silva EG, Malpica A. Serous carcinoma of the ovary and peritoneum with metastases to the breast and axillary lymph nodes: a potential pitfall. Am J Surg Pathol 2004; 28: 1646-1651. (PMID: 15577686) [CrossRef]
- Schneuber SE, Scholz HS, Regitnig P, Petru E, Winter R. Breast metastasis 56 months before the diagnosis of primary ovarian cancer: a case study. Anticancer Res 2008; 28: 3047-3050. (PMID: 19031954)
- Tempfer CB, El Fizazi N, Ergonenc H, Solass W. Metastasis of ovarian cancer to the breast: A report of two cases and a review of the literature. Oncol Lett; 2016; 11: 4008-4012. (PMID: 27313731)
 [CrossRef]
- 12. Lee AHS. The histological diagnosis of metastases to the breast from extramammary malignancies. J Clin Pathol 2007; 60: 1333-1341. (PMID: 18042689) [CrossRef]

Primary Benign Phyllodes Tumor of The Vulva: Case Report and Review of Literature

Asuman Kilitci¹ (D), Okan Arıoz² (D)

ABSTRACT

Phyllodes tumor (PT) of the vulva is very rarely seen and has been reported in only 17 cases in English literature. It is still uncertain that proliferative mammary gland lesions including PT in the anogenital region originate from ectopic breast tissue or from local adnexal structures. We report a case of primary benign PT of the vulva in a 41-year-old female patient. Microscopic examination revealed biphasic tumoral formation with typically extensive leaf-like papillary structures growing toward slit-like spaces under the skin. In immunohistochemical examination, more than 50% of epithelial cells showed a positive reaction with ER, PR, and panCK and a focal positive reaction with GCDFP-15. Myoepithelial cells showed a positive reaction with SMA, CD10, and WT-1. In this report, we underline the clinicopathologic features of PT localized to an unusual site, and also discuss its etiology, differential diagnosis in the light of the current literature.

Keywords: Vulva, phyllodes tumor, skin, benign

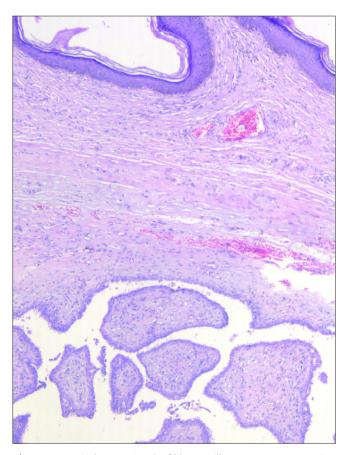
Cite this article as: Kilitci A, Arıoz O. Primary Benign Phyllodes Tumor of The Vulva: Case Report and Review of Literature. Eur J Breast Health 2019; 15(3): 196-199.

Introduction

Breast lesions can also be found in extramammary areas such as the axilla, anus, prostate, seminal vesicle, and vulva. These lesions include diagnoses such as fibrocystic disease, fibroadenoma, intraductal papilloma, hidradenoma papilliferum, lactating adenoma, and adenocarcinoma. It is still uncertain that proliferative mammary gland lesions in the anogenital region originate from ectopic breast tissue or from local adnexal structures. Phyllodes tumor (PT) accounts for less than 1% of all breast tumors and can also occur in the ectopic areas such as the vulva and axilla (1, 2). PT of the vulva is very rarely seen and has been reported in only 17 cases in English literature. The majority of cases were benign except for one borderline case, one malignant case and two low-grade malignant cases.

Case Presentation

A 41-year-old female patient (Gravida 3, Para 3) was admitted to our polyclinic due to a painless, slow-growing mass under the skin of the vulva which she first noticed 6 months ago. The mass was located between the labium majus and minus at the 5-6 o'clock position in the vulva. It was 3x4 cm in size and mobile. No redness or ulceration was observed. In the patient's history, there were no breastfeeding, breast disease, menstrual irregularity, malignancy, hormonal contraception, and pregnancy. Laboratory tests (hormone panel, gynecological and breast cancer markers) were within normal limits. The lesion was excised and sent to the pathology laboratory for histopathological examination with a preliminary diagnosis of fibroma. Macroscopic examination revealed a round, well-circumscribed, dirty-white, elastic, grooved and nodular lesion 3 cm in diameter under the skin and a 2.4x1.5 cm skin ellipse on its surface. No necrosis or hemorrhage was observed (Figure 1). Microscopic examination revealed biphasic tumoral formation with typically extensive leaf-like papillary structures growing toward slit-like spaces under the skin (Figure 2). The slit-like spaces consisted of a double layer of epithelial and myoepithelial cells (Figure 3). The stromal component consisted of monomorphic pale spindle cells and was hypocellular. Normal breast tissues were not detected in the sections prepared from the whole material. There were no stromal overgrowth, nuclear atypia, heterologous differentiation, or mitotic activity. In immunohistochemical examination, more than 50% of epithelial cells showed a positive reaction with ER, PR, panCK


This study was presented at the 1st International Congress on Sports, Anthropology, Nutrition, Anatomy and Radiology, 3-5 May 2018, Nevşehir, Turkey.

¹Department of Pathology, Ahi Evran University School of Medicine, Kırşehir, Turkey

²Department of Gynecology and Obstetrics, Ahi Evran University Training and Research Hospital, Kırşehir, Turkey

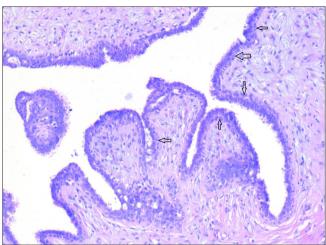


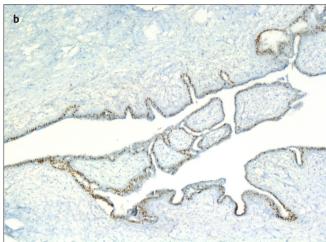
Figure 1. A round, well-circumscribed, dirty-white, elastic, grooved and nodular lesion 3 cm in diameter under the skin and a 2.4x1.5 cm skin ellipse on its surface. No necrosis or hemorrhage was observed

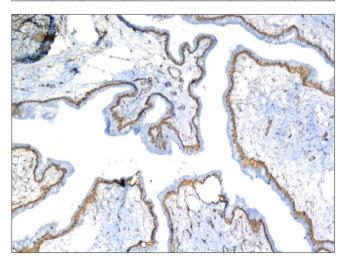
Figure 2. Typical extensive leaf-like papillary structures growing toward slit-like spaces under the skin (H&E, x50)

and CK7 and a focal positive reaction with GCDFP-15 (Figure 4a, b). Myoepithelial cells showed a positive reaction with p63, SMA, CD10, and WT-1 (Figure 4c). CK20 and CDX2 were negative. The stromal component was negatively stained with these markers. In the presence of histomorphologic and immunohistochemical findings, the patient was diagnosed with benign PT. Because a portion of the lesion showed continuity in the surgical margin, the patient was followed for the risk of recurrence. Written informed consent was obtained from patient who participated in this study.

Figure 3. The slit-like spaces consisted of a double layer of epithelial and myoepithelial cells (myoepithelial cells were indicated by an arrow) (H&E, x100)

Discussion and Conclusion


Two theories have been put forward to explain the cause of PT of the vulva. The first theory is the presence of ectopic breast tissue. The second theory is the presence of regional, specific and anogenital breast-like adnexal structures. The second theory is more accepted by the authors (3).


During the 4th and 6th week of fetal development, mammary buds develop as downgrowths from mammary crests, which are thickened strips of ectoderm extending from the axilla to the inguinal region. The breast tissue continues to develop in the normal pectoral region of the milk line, with regression of the remainder of the mammary ridges. The failure of this regression leads to the formation of ectopic breast tissue that can act as normal breast tissue or cause benign and malignant tumors. The actual incidence rate is unknown. Though this tissue is present at birth, it does not become evident until affected by female sex hormones at puberty, pregnancy, or lactation (4).

Van der Putte defined a specific variant of skin glands. In normal histology, the sebaceous glands are predominantly present on the medial surface of the labia majora, regardless of the presence of hair follicles. Van der Putte called these lesions mammary-like anogenital sweat glands, which consist of apocrine and eccrine glands and express estrogen and progesterone, rather than ectopic breast tissue. Similar to mammary glands, these glands have the capacity to branch into lobuli and to form acini. The origin of various neoplastic and reactive lesions of the anogenital region (including the vulva) which mimic mammary lesions has been explained with the presence of mammary-like glands. Moreover, it has been suggested that primordia of the mammary glands do not extend from the axillary-pectoral area to the vulva in human embryos, and that the number of ridges of mammary-like glands is greater than the number of residues of mammary-like glands, and that these glands are associated directly with cloacal derived tissues rather than breast lines. These have been reported to be localized in the interlabial sulcus, the paramedian area of the perineum and around the anus (5-7).

Mariappan et al. (8) have claimed that the presence of specific breast epithelium is not a prerequisite for the development of a tumor identical to mammary gland tumor, such as PT. PTs have also been

Figure 4. a-c. Immunohistochemical stains for PR, ER and SMA showed a positive reaction. A. PR x100, B. ER x50, C. SMA x50

reported in caudal regions without milk lines, such as the perianal region, prostate, and seminal vesicle. Bostwick et al. (9) reported a series of 23 cases diagnosed with PT of the prostate. They showed that the cases did not give a positive reaction with estrogen and were stained with different immunohistochemical markers such as prostate specific antigen and prostatic acid phosphatase. They demonstrated that one case was positively stained with progesterone. They suggested that two cases developed following estrogen therapy and

therefore hormonal factors might be effective in the pathogenesis of the tumor (9).

The presence of normal breast tissue or mammary-like glands around the lesion can give some clues about histogenesis (4). In our case, normal breast tissue or mammary-like glands were not observed within or around the lesion. However, the tumor was located between the labium majus and minus, and therefore it is likely to originate from the anogenital glands.

Patient with PT of the vulva are usually admitted with a one-sided, painless and solid mass. The labia majora, labia minora, and interlabial cleft are the most frequent sites of presentation. It involves both sides of the vulva in some cases admitted with itching, irritation, and dyspareunia (7). It is seen in the age range 17 to 69 years and commonly manifests in the 3rd and 4th decades of life in women. The average age at the time of admission was 35.14 years. The largest tumor diameter varies from 0.7 to 6.6 cm. The average tumor diameter is 3.47 cm. The growth rate is variable. While some cases show rapid growth in the near future, other cases remain the same size for years and are incidentally detected. Macroscopically, it is dirty-white, homogeneous, solid and well-circumscribed, pushes surgical boundaries and has papillary projections or polypoid appearance (2, 3).

Phyllodes tumor of the vulva exhibits identical microscopic signs with its counterpart in the breast thanks to its biphasic pattern and leaf-like configuration. Hyperplastic epithelium and pseudostratification can be observed. The stroma may show cellularity ranging from low to high. Significant nuclear pleomorphism is rare. There is no mitosis or lower. Immunohistochemically, secretory epithelial cells are positively stained with estrogen and progesterone, and myoepithelial cells are positively stained with estrogen, progesterone, WT1, and CD10 and is positively stained with CD34, vimentin, and SMA. The Ki-67 proliferation rate can range from 1 to 15% (3).

Fibroadenoma is mainly considered in the differential diagnosis of PT of the vulva. The overlapping properties can be seen, and the separation of these entities from each other may be problematic. The characteristic leaf-like projections of PT are rarely described in fibroadenoma. Similar to PT of the breast, the tendency to become cystic, increased cellularity, cellular heterogeneity and stroma with cytological atypia may be more common in PT of the vulva (7). Papillary hidradenoma may show a complex papillary growth pattern such as PT but does not have a marked stromal component. Moreover, papillary structures are surrounded by double epithelial layer and have focal apocrine protrusions. Chondroid syringomas have cartilaginous islands within fibromyxoid stroma. In contrast to PTs, chondroid syringomas may have areas of squamous and sebaceous differentiation. Mullerian adenosarcoma of the cervix that secondarily involves the vulva may imitate a PT due to the formation of polypoid mass, a similar leaf-like architecture, and biphasic pattern. However, periglandular stromal condensation, increased stromal cellularity, and mitosis are more frequent (10).

Benign PT of the vulva is rarely seen in this localization and has homologous features with the breast histopathologically and immuno-histochemically. However, its histogenesis has not yet been fully understood. In our case, we could not reveal histomorphologic findings that would definitely support one of the theories suggested in the pathogenesis. However, we think that the lesion can originate from anogenital mammary-like glands because it was located between the

labium majus and minus and that a possible hormonal etiology may also play a role. Recurrence is rare with total resection of the tumor.

Informed Consent: Written informed consent was obtained from patient who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - A.K., O.A.; Design - O.A.; Supervision - A.K.; Resources - A.K.; Materials - O.A., A.K.; Data Collection and/or Processing - O.A., A.K.; Analysis and/or Interpretation - A.K.; Literature Search - A.K.; Writing Manuscript - A.K.; Critical Review - A.K., OA.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Moulla A, Hunt L, Shaikh H, Datta S. Phyllodes Tumor in the Vulva. Breast J 2017; 23: 476-478. (PMID: 28224691) [CrossRef]
- Mannan AASR, Kahvic M, Aziz AHA. Phyllodes tumor of the vulva: report of a rare case and review of the literature. Am J Dermatopathol 2010; 32: 384-386. (PMID: 20514681) [CrossRef]

- Lee S, Nodit L. Phyllodes tumor of vulva: a brief diagnostic review. Arch Pathol Lab Med 2014; 138: 1546-1550. (PMID: 25357118) [CrossRef]
- Özbudak IH, Akkaya H, Akkaya B, Erdoğan G, Peştereli HE, Karaveli FŞ. Phyllodes Tumor of the Vulva: Report of Two Cases/Vulvanın Fillods Tümörü: İki Olgu Sunumu. Turk Patoloji Derg 2013; 29: 73-76. (PMID: 23354802) [CrossRef]
- Van der Putte SC. Mammary-like glands of the vulva and their disorders.
 Int J Gynecol Pathol 1994; 13: 150-160. (PMID: 8005737) [CrossRef]
- Wilkinson EJ, Hardt NS. Vulva. In: Mills SE. (Ed): Histology for pathologists. 3rd ed., Philadelphia, Lipppincott Williams and Wilkins 2007, 983-998.
- Denlinger LN, Lokhandwala PM, Abendroth CS. Benign phyllodes tumor of the vulva: a case report and literature review. Rare tumors 2015; 7: 148-150. (PMID: 26788277) [CrossRef]
- Mariappan MR, Lagera JE, Fadare O, Sibley RK. A 69-year-old woman with a vulvar lesion. Phyllodes tumor of the vulva. Arch Pathol Lab Med 2006; 130: e11-e12. (PMID: 16390249)
- Bostwick DG, Hossain D, Qian J, Neumann RM, Yang P, Young RH, Jones EC. Phyllodes tumor of the prostate: long-term followup study of 23 cases. J Urol 2004; 172: 894-899. (PMID: 15310992) [CrossRef]
- Heffernan TP, Sarode VR, Hoffman B, Lea J. Recurrent phyllodes tumor of the vulva: a case report with review of diagnostic criteria and differential diagnosis. Int J Gynecol Pathol 2010; 29: 294-297. (PMID: 20407333) [CrossRef]

Unexpected Finding on Mammography and MRI due to Accumulation of Iron Oxide Particles Used for Sentinel Lymph Node Detection

Gözde Arslan¹ D, Cem Yılmaz² D, Levent Celik³ D, Rahmi Cubuk¹ D, Nuri Tasalı⁴ D

ABSTRACT

We present a case with imaging artefacts on mammography and Magnetic Resonance Imaging (MRI) caused by iron oxide particles. After being diagnosed with the medullary cancer of the breast, the female patient had a breast conserving surgery on right breast. Iron oxide particles were used for the detection of the sentinel lymph node during operation. On follow ups, a de novo density on mammography, which was initially thought to be a new tumour, was found. MR images proved that the lesion is an artefact caused by iron oxide accumulation. Our aim in this case study is to underline and discuss the imaging artefacts caused by these particles and raise awareness.

Keywords: Breast, iron oxide, mammography, MRI

Cite this article as: Arslan G, Yılmaz C, Çelik L, Çubuk R, Tasalı N. Unexpected Finding on Mammography and MRI due to Accumulation of Iron Oxide Particles Used for Sentinel Lymph Node Detection. Eur J Breast Health 2019; 15(3): 200-202.

Introduction

A sentinel lymph node biopsy (SLNB) is a procedure during which the sentinel lymph node, which is the main drainage pathway, is identified, excised, and evaluated histopathologically to detect cancer cells. A negative SLNB result suggests that cancer cells have not developed the ability to spread to nearby lymph nodes or other organs. Sentinel lymph node biopsy (SLNB) is a feasible and reliable method for staging the axilla before breast cancer surgery (1-6). The conventional method is with radiotracer 99mtc using blue dye. In the latest years a new method for detecting sentinel node called iron oxide particle technique ("SentiMag" technique"), has been developed as an alternative to the radiotracer. In this new method a liquid which contains iron oxide particles is injected subareolarly. The liquid dissolves in the breast towards the axilla by manual massage. Later, a probe is used to detect iron oxide particles with ferromagnetic effect. Prospective clinical studies like "The Central-European SentiMag study" and meta analyses of earlier studies showed that magnetic SLNB method can be performed easily, safely and is a promising alternative to the radioactive method. (7-10). By time these iron oxide particles disseminate and are cleared through the lymphatics. However, we know that in some cases they might stay in the breast tissue for years and reduce imaging quality and sensitivity by causing artefacts (7, 8). Our aim in this case study is to discuss those imaging artefacts and help radiologists be aware of them.

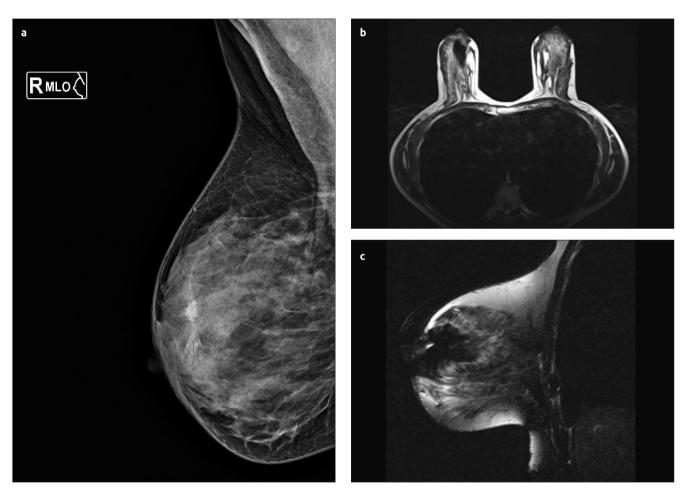
Case Presentation

We present a 41-year-old female patient who had breast conserving surgery for biopsy proven medullary cancer a year ago. Informed consent was taken from the patient. She had a 7x3 mm sized palpable right breast mass. Although being palpable, it was occult on mammography (Figure 1a). The lesion was detected by sonography. On sonography a hypoechoic lesion with well-defined borders was found and classified as category 3 by Breast Imaging Reporting and Data System (BI-RADS) (Figure 1b). However, the patient insisted on biopsy and histopathological diagnosis revealed the medullary cancer. A breast conserving surgery was performed on right breast. 12 months later the patient was referred to mammography unit for routine follow up. On mammography, a spiculated de novo lesion that was denser than the radiographically dense breast parenchyma was identified on right upper breast (Figure 2a). The lesion was first thought to be compatible with recurrence. A new primary was also considered since the previous lesion was occult on mammography. We could not identify the new lesion on sonography. Magnetic Resonance images were obtained to delineate the whole breast. On MRI, a marked magnetic

200

¹Department of Radiology, Maltepe University, İstanbul, Turkey

²Department of General Surgery, İstanbul Oncology Hospital, İstanbul, Turkey


³Department of Radiology, Radiologica Imaging Center, Istanbul, Turkey

⁴Department of Radiology, İstanbul Oncology Hospital, İstanbul, Turkey

Figure 1. a, b. Right MLO Mammography images. No mass is seen (a). A hypoechoic lesion with well-defined borders is seen on sonography compatible with BI-RADS 3 lesion (b)

Figure 2. a-c. Postop mammography. Right MLO images. A spiculated density is seen on the right upper breast (a). Postop MRI. Axial and sagittal T2 weighted TSE, non-fat saturated image. A prominent susceptibility artefact is obscuring the right breast (b, c)

susceptibility artefact obscuring the central part of the breast was seen. These areas were attributed to previous iron oxide particles which were injected for SLN detection (Figure 2b, c) (SentiMag* technique).

Discussion and Conclusion

Iron oxide technique is a new, promising safe and effective method used as an alternative to radiotracer method for sentinel lymph node detection (1-6). Large metanalyses such as Nordic SentiMag trial and The Central-European SentiMag study have shown their efficacy and

safety (7-8). The Central-European SentiMag study found that more pathologically positive SLNs were found with the SentiMag technique compared to the radiotracer method (7). However, the artefact caused by iron oxide particles and its effect on the quality of follow up imaging have not been discussed in these trials. Although a couple of previous studies (11-13) have shown the susceptibility artefacts caused by iron oxide particles on MRI, the appearance of these particles on mammography which is the first line modality used during the follow ups after breast conserving surgery have not been previously discussed. To

our knowledge, this is the first case study to demonstrate the iron oxide particles on mammography. Knowing the appearance of iron deposits on MRI and especially mammography is essential. In our case, the iron deposits were highly dense and denser than the breast parenchyma on mammography but interestingly occult on sonography. The density depends on the amount of particles accumulated; hence it might not be so dramatic in all cases. Iron oxide particles cause significant magnetic susceptibility as they are paramagnetic. On MRI, susceptibility artefact is seen as loss of signal which is called as "signal void" and they cause spatial distortion. The area effected by artefact is usually much larger than the size of the object causing the artefact so even a tiny amount of ferromagnetic material occult on x-ray or sonography can lower image quality on MRI. In the case study by Karakatsanis et al. (13), a patient with a history of iron oxide injection was discussed. In their case, unlike ours, no artefact was seen on the follow up mammogram. However, susceptibility artefacts were observed on the follow up MRI. On post contrast MR images, a new tumour was seen adjacent to artefacts. In our case the artefact on MRI was so evident in all sequences that it was impossible to detect a new lesion. Besides artefacts, staining the skin on the injected area (14) which is usually temporary is another limitation of these particles. Interestingly no staining was observed in our case.

We believe lowering the doses of these particles might be a solution for these undesirable side effects. An ongoing trial (Senti-Dose, https://doi.org/10.1186/ISRCTN11156955) is currently investigating the effect of lower doses.

In conclusion, the artefacts caused by iron deposits might be a problem in the long run. Reducing the amount of the injected material or changing the technique of massage for dissolving the particles might be a solution. As radiologists, we have to be alert for these kind of side artefacts. When we deal with a new density on follow ups of breast cancer on mammography, we have to question the method used for SLNB to avoid unnecessary biopsies and more importantly, to reduce the patient's anxiety. Knowing the patient's history and the method used for SLN detection guide us to consider this differential diagnosis.

Informed Consent: Written informed consent was obtained from patient who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - L.Ç.; Design - G.A.; Supervision - L.Ç.; Data Collection and/or Processing - G.A.; Analysis and/or Interpretation - L.Ç., GA.; Literature Search - G.A.; Writing Manuscript - G.A.; Critical Review - L.Ç.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, Intra M, Veronesi P, Robertson C, Maisonneuve P, Renne G, De Cicco C, De Lucia F, Gennari R. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 2003; 349: 546-553. (PMID: 12904519) [CrossRef]
- Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM, Yiangou C, Horgan K, Bundred N, Monypenny I, England D, Sibbering

- M, Abdullah TI, Barr L, Chetty U, Sinnett DH, Fleissig A, Clarke D, Ell PJ. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 2006; 98: 599-609. (PMID: 16670385) [CrossRef]
- Zavagno G, De Salvo GL, Scalco G, Bozza F, Barutta L, Del Bianco P, Renier M, Racano C, Carraro P, Nitti D; GIVOM Trialists. A Randomized clinical trial on sentinel lymph node biopsy versus axillary lymph node dissection in breast cancer: results of the Sentinella/GIVOM trial. Ann Surg 2008; 247: 207-213. (PMID: 18216523) [CrossRef]
- Gill G SNAC Trial Group of the Royal Australasian College of Surgeons (RACS), NHMRC Clinical Trials Centre. Sentinel-lymph-node-based management or routine axillary clearance? One-year outcomes of sentinel node biopsy versus axillary clearance (SNAC): a randomized controlled surgical trial. Ann Surg Oncol 2009; 16: 266-275. (PMID: 19050973)
- 5. Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Ashikaga T, Weaver DL, Miller BJ, Jalovec LM, Frazier TG, Noyes RD, Robidoux A, Scarth HM, Mammolito DM, McCready DR, Mamounas EP, Costantino JP, Wolmark N; National Surgical Adjuvant Breast and Bowel Project. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol 2007; 8: 881-888. (PMID: 17851130) [CrossRef]
- Canavese G, Catturich A, Vecchio C, Tomei D, Gipponi M, Villa G, Carli F, Bruzzi P, Dozin B. Sentinel node biopsy compared with complete axillary dissection for staging early breast cancer with clinically negative lymph nodes: results of randomized trial. Ann Oncol 2009; 20: 1001-1007. (PMID: 19174453) [CrossRef]
- Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G, Polkowski W, Hauser N. The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs radioisotope. Breast 2014; 23: 175-179. (PMID: 24484967) [CrossRef]
- 8. Karakatsanis A, Christiansen PM, Fischer L, Hedin C, Pistioli L, Sund M, Rasmussen NR, Jørnsgård H, Tegnelius D, Eriksson S, Daskalakis K, Wärnberg F, Markopoulos CJ, Bergkvist L. The Nordic SentiMag trial: a comparison of super paramagnetic iron oxide (SPIO) nanoparticles versus Tc99 and patent blue in the detection of sentinel node (SN) in patients with breast cancer and a meta-analysis of earlier studies. Breast Cancer Res Treat2016; 157: 281-294. (PMID: 27117158) [CrossRef]
- Teshome M, Wei C, Hunt KK, Thompson A, Rodriguez K, Mittendorf EA. Use of a Magnetic Tracer for Sentinel Lymph Node Detection in Early-Stage Breast Cancer Patients: A Meta-analysis. Ann Surg Oncol 2016; 23: 1508-1514. (PMID: 26893221) [CrossRef]
- Ghilli M, Carretta E, Di Filippo F, Battaglia C, Fustaino L, Galanou I, Di Filippo S, Rucci P, Fantini MP, Roncella M. The superparamagnetic iron oxide tracer: a valid alternative in sentinel node biopsy for breast cancer treatment. Eur J Cancer Care 2017; 26. (PMID: 26365441) [CrossRef]
- Huizing E, Anninga B, Young P, Monypenny I, Hall-Craggs M, Douek M. Analysis of void artefacts in post-operative breast MRI due to residual SPIO after magnetic SLNB in SentiMAG Trial participants. Eur J Surg Oncol 2015; 41: S18. [CrossRef]
- Krischer B, Forte S, Niemann T, Kubik-Huch RA, Leo C. Feasibility of breast MRI after sentinel procedure for breast cancer with superparamagnetic tracers. Eur J Surg Oncol 2018; 44: 74-79. (PMID: 29217399) [CrossRef]
- Karakatsanis A, Obondo C, Abdsaleh S, Hersi AF, Eriksson S, Wärnberg F. Optimisation of breast MRI compatibility after sentinel node biopsy with paramagnetic tracers. Eur J Surg Oncol 2018; 44: 731-732. (PMID: 29478740) [CrossRef]
- Karakatsanis A, Daskalakis K, Stålberg P, Olofsson H, Andersson Y, Eriksson S, Bergkvist L, Wärnberg F. Superparamagnetic iron oxide nanoparticles as the sole method for sentinel node biopsy detection in patients with breast cancer. Br J Surg 2017; 104: 1675-1685. (PMID: 28877348)
 [CrossRef]

Treatment of Capsular Contracture After Radiotherapy in Breast Reconstruction

Yasemin Benderli Cihan¹ D, Halit Baykan² D, Alaettin Arslan¹ D

Cite this article as: Benderli Cihan Y, Baykan H, Arslan A. Treatment of Capsular Contracture After Radiotherapy in Breast Reconstruction. Eur J Breast Health 2019; 15(3): 203-204.

Dear Editor,

Breast prostheses are made for cosmetic reasons and in order to reduce defective body perception and psychosocial trauma caused by the absence of breast tissue. Silicone breast prostheses are frequently used in breast reconstruction after breast augmentation or mastectomy. Safety and efficacy criteria are considered when applying silicone breast prostheses. Non-toxic, immunogenic, teratogenic, and lack of potential effect on mammography determine its reliability; development of capsular contracture, deflation, palpation and the possibility of folding in the anatomical pouch is determined by its effectiveness. The fillers and implant options used in consideration of these criteria are also limited in time and the ideal ones are introduced in medicine (1-4).

The most common complication after reconstruction or augmentation with silicone implant is the formation of constrictive fibrous capsules around the implant. This causes fibrous tissue capsule contraction. The contraction is caused by pain in the breast, hardening, and asymmetry in the breast. It has been reported that between 1.3% and 30% of the patients with implant have developed capsular contractures. Approximately 92 percent of contracture occur within the first 12 months after surgery. The longer the implants settle, the higher the risk of contracture occurring cumulatively. Although bacterial colonization, implant surface characteristics, hematoma formation and radiation are found to be associated with etiopathogenesis, the cause and pathogenesis is still not known. In order to prevent the formation of capsule contracture, various methods the prosthesis pouch with various substances, using fibrin glue, preventing hematoma, using silicone outer surfaces in different tissues and placing the prosthesis in different anatomical locations were tried. However, the exact treatment is not available at present (3-8).

Nowadays, mastectomy is applied to the patients concurrently with surgery, 2 weeks after mastectomy or in patients who will receive RT after 3 months. In breast cancer cases, subcutaneous mastectomy with simultaneous expander and implant and breast reconstruction are common methods. It is not clear yet which of these three applications is a more reliable method. When radiotherapy (RT) is applied in breast cancer patients with silicone prosthesis, it is very important for the treatment of prosthesis in the treatment area and the complications that may occur. It has been reported that silicone breast prostheses have no negative effect on photon and electron dose distribution. In addition, it was determined that the silicone elastomer used in breast prostheses did not reduce the radiation transmission (9). There is not enough information in the literature regarding the prevention / treatment of complications in prostheses after RT. In studies performed, it was shown that complications of complications such as capsular contracture (1.3-15%) and worse cosmetic results and reconstruction after radiotherapy treatment have increased in patients with breast reconstruction with silicone implant (2, 3, 6-8). However, most of the current studies are retrospective cohort studies and there is no prospective study. The effects of radiation on the formation of capsules are tried to be explained. Recent studies have shown that the transforming growth factor-β (TGF-β1) is an important factor in the formation of fibrosis and radiation-induced capsule formation. Positive results have been reported in studies to prevent these effects by inhibition of TGF-β signal transduction (3). Evans et al. (4) performed breast reconstruction with implants and compared the contracture stage, pain and extrusion in patients with RT without RT. They reported that radiotherapy increased the capsular contracture stage (Baker III, IV) and had significant negative consequences for the clinical appearance and patient satisfaction. Azzi et al. (5) reported that radiotherapy accelerated the process of capsular contracture around the silicone implant in a study of 105 patients.

¹Department of Radiation Oncology, Kayseri Training and Research Hospital, Kayseri, Turkey

²Department of Plastic Surgery, Kayseri Training and Research Hospital, Kayseri, Turkey

Nowadays, the increase in the studies on the use of implants has led to an increase in the studies to investigate the agents for prevention of implant complications. Chung and colleagues reported that simvastatin was effective in reducing radiation-induced capsular fibrosis around silicone implants in rats (6). Cook and his colleagues treated mastectomy with adjuvant radiation-induced breast prosthesis for 30 days with Trental and Vitamin E for 180 days. Three patients underwent implant revision. In 2 cases developed contracture. In conclusion, it was reported that combination of Trental and Vitamin E could prevent serious contractures and implant losses (8). In the recent meta-analysis, the use of biological cellular dermal and synthetic matrices in combination with a tissue expander or an implant has been reported to slow the progression of capsule formation and fibrosis (6).

In the literature, it was observed that patients who received RT after breast reconstruction were not informed about the risks of connective tissue disease, autoimmune disease, or tumor development, and that no laboratory or clinical evaluation was performed to determine possible systemic disease development. In addition, there is no data to evaluate the risk of cancer recurrence, delayed adjuvant therapy, and health-related quality of life in this group of patients.

As a result, there is no agent to prevent the complications of prosthesis in patients who will undergo postoperative radiotherapy after oncologic surgery and in implant and breast operations. Breast cancer patients who have breast prostheses should be followed for a long time in terms of cancer recurrence, connective tissue disease, autoimmune disease, or tumor development risks. Patients with signs and symptoms of systemic disease should be identified and laboratory investigations and clinical evaluation should be performed. Studies on this subject are needed.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - Y.B.C., H.B., A.A.; Design - Y.B.C., H.B.; Supervision - Y.B.C., H.B., A.A.; Literature Search - Y.B.C., H.B., A.A.; Writing Manuscript - Y.B.C., H.B., A.A.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Benderli Cihan Y, Baykan H. The role of radiotherapy following mastectomy and reconstruction. J BUON 2018; 23: 837-838. (PMID: 30003763)
- Bachour Y, Oei LJ, Van der Veen AJ, Vos BE, Louis A, Heukelom S, Ritt MJPF, Niessen FB, Koken PW, Winters HAH. The Influence of Radiotherapy on the Mechanical Properties of Silicone Breast Implants. Plast Reconstr Surg Glob Open 2018; 6: e1772. (PMID: 30175006) [CrossRef]
- Kim IK, Park SO, Chang H, Jin US. Inhibition Mechanism of Acellular Dermal Matrix on Capsule Formation in Expander-Implant Breast Reconstruction After Postmastectomy Radiotherapy. Ann Surg Oncol 2018; 25: 2279-2287. (PMID: 29855829) [CrossRef]
- Evans GR, Schusterman MA, Kroll SS, Miller MJ, Reece GP, Robb GL, Ainslie N. Reconstruction and the radiated breast: is there a role for implants?; Plast Reconstr Surg 1995; 96: 1111-1115. (PMID: 7568487)
 [CrossRef]
- Azzi AJ, Zammit D, Lessard L. Single-Stage Breast Reconstruction Using an All-In-One Adjustable Expander/Implant. Plast Reconstr Surg Glob Open 2018; 6: e1609. (PMID: 29464155) [CrossRef]
- Hallberg H, Rafnsdottir S, Selvaggi G, Strandell A, Samuelsson O, Stadig I, Svanberg T, Hansson E, Lewin R. Benefits and risks with acellular dermal matrix (ADM) and mesh support in immediate breast reconstruction: a systematic review and meta-analysis. J Plast Surg Hand Surg 2018; 52: 130-147. (PMID: 29320921) [CrossRef]
- Chung KJ, Park KR, Lee JH, Kim TG, Kim YH. Simvastatin Reduces Capsular Fibrosis around Silicone Implants. J Korean Med Sci 2016; 31: 1273-1278. (PMID: 27478339) [CrossRef]
- Cook M, Johnson N, Zegzula HD, Schray M, Glissmeyer M, Sorenson L. Prophylactic use of pentoxifylline (Trental) and vitamin E to prevent capsular contracture after implant reconstruction in patients requiring adjuvant radiation. Am J Surg 2016; 211: 854-859. (PMID: 27016313)
 [CrossRef]
- Krishnan L, George FJ, Mansfield CM, Krishnan EC. Effect of silicone gel breast prosthesis on electron and photon dose distributions. Med Phys 1982; 10: 96-100. (PMID: 6405147) [CrossRef]

Lapatinib? or Radiotherapy? In Cranial Metastasis of Breast Cancer

Yasemin Benderli Cihan 📵

Department of Radiation Oncology, Kayseri Tarining and Research Hospital, Kayseri, Turkey

Cite this article as: Benderli Cihan Y. Lapatinib? or Radiotherapy? In Cranial Metastasis of Breast Cancer. Eur J Breast Health 2019; 15(3): 205-206.

Dear Editor,

During the last two decades, significant advances in molecular oncology have led to the introduction of targeted therapies into clinical use. Many drugs that are being used in targeted therapy interfere with the proliferation of tumor cells by interacting with cell receptors and intracellular signaling molecules. Monoclonal antibodies and oral small molecule kinase inhibitors, which have recently been used in cancer treatment, are molecular agents that have been developed with the understanding of specific signaling pathways (1-3).

Lapatinib ditosylate (Tykerb *, GW 572016) is a tyrosine kinase inhibitor that acts reversibly to human epidermal growth factor receptor 1 (EGFR/HER1) and human epidermal growth factor receptor 2 (HER2/ErbB2) tyrosine kinase by inhibiting the phosphorylation and activation of the receptor. Inhibition of phosphorylation and activation of the receptor results in inhibition of the PI3K/Akt and MAPK pathways activated by HER2, thereby stopping cellular growth and proliferation, resulting in increased apoptosis. Lapatinib's activity against several types of tumors were investigated in phase trials and their effect was tested especially in breast cancer. It has been approved for use in patients with HER2-positive metastatic breast cancer after progressive, regimens including taxanes, anthracyclines and trastuzumab. With the introduction of this drug, it has been possible to prolong survival in the treatment of metastases in HER2 positive breast cancer and in adjuvant therapy. Although it was moderately effective as monotherapy in first-line treatment in metastatic breast cancer, its main effect was obtained by its combination with cytotoxic agents. Lapatinib is generally well tolerated and most of its side effects are mild (grade 1 or 2). Diarrhea, nausea, vomiting and cutaneous toxicity are frequently observed in the early stages of treatment (1-6).

Lapatinib crosses the blood-brain barrier due to its small molecule structure. Lapatinib has been shown to prevent the development of brain metastases in breast cancer when combined or alone. Cameron et al. (1) reported a lower incidence of brain metastasis in the lapatinib group in the phase III study in which lapatinib-capecitabine was compared with the combination of lapatinib-capecitabine in HER2 (+) metastatic breast cancer (2% in lapatinib-capecitabine arm, 6% in capecitabine arm, p=0.045). Lin et al. (3) looked at the efficacy of monotherapy lapatinib in patients who had previously been treated with trastuzumab and developed brain metastasis. A 20% response to brain metastases has been reported. Metro et al. (4) reported a 31.8% partial response with a combination of lapatinib - capecitabine and a stabilization of 27.3% in HER2 (+), metastatic breast cancer patients who had been treated with brain metastasis under the treatment of trastuzumab. The overall survival was 27.9 months in patients treated with lapatinib - capecitabine and 16.7 months in patients who were treated with trastuzumab alone (p=0.01) (4). These results led to the demonstration of the efficacy of lapatinib in breast cancer brain metastases and led scientists to compare other treatment options applied. Miller et al. (6) looked at the response in radiotherapy in patients with HER2/epidermal growth factor receptor tyrosine kinase inhibitor (TKI) and untreated breast cancer brain metastasis. The incidence of 12-month cumulative poor response decreased from 15.1% to 5.7% in patients with concurrent TKI with stereotactic radiosurgery (p<.001). In conclusion, in the HER2 positive patient group, radiosurgery with TKIs was suggested to prevent neurocognitive disorder and all brain radiotherapy should be considered in salvage treatment (6). Studies have shown that lapatinib treatment after whole brain radiation therapy can improve survival in patients with HER2-positive breast cancer with multiple brain metastasis with significant neurological symptoms (7). In another study, it has been suggested that lapatinib as a consecutive treatment because of the limited

effect of cranial radiotherapy in patients with HER2 positive cranial metastases (8). In the phase II study of patients with brain metastasis, the efficacy of lapatinib monotherapy was evaluated in patients who had previously received local treatments such as trastuzumab or cranial radiotherapy. The partial response in 8% of the patients and the stable response in 16% of the patients indicated that the treatment alternative seemed to be an important option in a very limited group of patients. However, it has been reported that it can prolong survival by preventing the development of brain metastasis (5).

As a result, lapatinib is a double-acting selective inhibitor that inhibits signal transduction by inhibiting EGFR/HER1 and HER2/ErbB2 tyrosine kinase. In addition, the results of the treatment of brain metastases, which is an important problem in HER2 overexpressing breast cancers, are promising because of the first small molecule TKI that crosses the blood brain barrier. However, in order to achieve better control of cranial metastasis and a longer overall survival, new treatment strategies should be developed with radiotherapy. Studies on this subject are needed.

Peer-review: Externally peer-reviewed.

Conflict of Interest: The author has no conflicts of interest to declare.

Financial Disclosure: The author declared that this study has received no financial support.

References

 Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J, Chan A, Campone M, Viens P, Davidson N, Gorbounova V, Raats JI, Skarlos D, Newstat B, Roychowdhury D, Paoletti P, Oliva C, Rubin S, Stein S, Geyer CE. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine lone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 2008; 112: 33-43. (PMID: 18188694) [CrossRef]

- Gori S, Rimondini S, De Angelis V, Colozza M, Bisagni G, Moretti G, Sidoni A, Basurto C, Aristei C, Anastasi P, Crinò L. Central nervous system metastases in HER-2 positive metastatic breast cancer patients treated with trastuzumab: incidence, survival, and risk factors. Oncologist 2007; 12: 766-773. (PMID: 17673608) [CrossRef]
- Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, Harris GJ, Bullitt E, Van den Abbeele AD, Henson JW, Li X, Gelman R, Burstein HJ, Kasparian E, Kirsch DG, Crawford A, Hochberg F, Winer EP. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2008; 26: 1993-1999. (PMID: 18421051) [CrossRef]
- Metro G, Foglietta J, Russillo M, Stocchi L, Vidiri A, Giannarelli D, Crinò L, Papaldo P, Mottolese M, Cognetti F, Fabi A, Gori S. Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. Ann Oncol 2011; 22: 625-630. (PMID: 20724575) [CrossRef]
- Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler H-J, Roché H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 2009; 15: 1452-1459. (PMID: 19228746) [CrossRef]
- Miller JA, Kotecha R, Ahluwalia MS, Mohammadi AM, Chao ST, Barnett GH, Murphy ES, Vogelbaum MA, Angelov L, Peereboom DM, Suh JH. Overall survival and the response to radiotherapy among molecular subtypes of breast cancerbrain metastases treated with targeted therapies. Cancer 2017; 123: 2283-2293. (PMID: 28192598) [CrossRef]
- Fontanella C, De Carlo E, Cinausero M, Pelizzari G, Venuti I, Puglisi F. Central nervous system involvement in breast cancer patients: Is the therapeutic landscape changing too slowly? Cancer Treat Rev 2016; 46: 80-88. (PMID: 27218867) [CrossRef]
- 8. Iwata H, Narabayashi M, Ito Y, Saji S, Fujiwara Y, Usami S, Katsura K, Sasaki Y. A phase II study of lapatinib for brain metastases in patients with HER2-overexpressing breast cancer following trastuzumab based systemic therapy and cranial radiotherapy: subset analysis of Japanese patients. Int J Clin Oncol 2013; 18: 621-628. (PMID: 23011099) [CrossRef]