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Key Points

• 	 The ropporin-1 gene (ROPN1) overexpression is linked to worse overall survival, especially in triple negative or basal-like breast cancer.

•	 High ROPN1 levels predict poor prognosis in both chemotherapy-treated and untreated patients.

•	 ROPN1 expression inversely correlates with DNA methylation and it is known that hypomethylation is associated with adverse outcomes.

•	 In vitro, cisplatin, doxorubicin, and paclitaxel variably modulated ROPN1 expression in different cancer cell lines with increased expression levels in 
some cell lines, suggesting therapy resistance.

•	 Treatment with 5-aza-2′-deoxycytidine or trichostatin-A led to increased ROPN1 expression.

ABSTRACT

Objective: The ropporin-1 (ROPN1) gene, initially linked to sperm motility, is differentially expressed in triple negative breast cancer (TNBC), suggesting 
a role in tumor progression and therapy resistance. To characterize ROPN1 expression in breast cancer and evaluate its association with clinicopathological 
features, survival, and treatment response as a translational biomarker.

Materials and Methods: Data from The Cancer Genome Atlas (1,087 patients), Sweden Cancerome Analysis Network-Breast (3,273 patients), and 
geodatabases were analyzed. ROPN1 transcriptional levels were assessed in relation to clinical variables and survival. Chemotherapy agents and epigenetic 
modulators were tested in cell lines to evaluate ROPN1 regulation.

Results: Transcriptional overexpression of ROPN1 was significantly enriched in TNBC/basal-like tumors (p<0.0001) and correlated with reduced overall 
survival, particularly in basal cases [hazard ratio (HR) = 1.85; 95% confidence interval (CI): 1.02–3.33; p = 0.041]. Patients treated with chemotherapy and 
exhibiting high ROPN1 levels had unfavorable prognosis, with an even poorer profile in untreated cohorts (HR = 4.55; 95% CI:  1.33–14.29; p = 0.01). 
Hypomethylation at cg00101712 (HR = 0.59; p = 0.016) and cg09298623 (HR = 0.49; p = 0.0014) CpG sites were associated with worse survival at 5 years 
follow-up, underscoring epigenetic regulation of this pathway as a key driver of poor outcomes. Furthermore, in vitro treatment with cisplatin, doxorubicin, 
and paclitaxel resulted in variable responses, with a significant reduction of ROPN1 in HCC70 and HS578T cell lines, while BT549 and MDA-MB-231 
cell lines showed notable increases.

Conclusion: ROPN1 overexpression in TNBC/basal-like tumors suggests a role as a prognostic biomarker and predictor of post-chemotherapy resistance. 
Investigation of ROPN1 expression in breast tumors may lead to alternative strategies targeting pro-metastatic pathways and improve precision treatment 
for aggressive breast cancer.
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Introduction

Breast cancer remains the most commonly diagnosed malignancy 
in women, comprising 24.5% of cases with over 2.3 million new 
diagnoses annually, and is the leading cause of female cancer death 
(685,000 deaths in 2020) (1). The incidence of breast cancer is higher 
in developed countries, reflecting both lifestyle factors and advanced 
screening, whereas delayed diagnosis and limited therapy access drive 
elevated mortality in low- and middle-income regions (2, 3). By 2040, 
cases are projected to exceed 3 million, with over 1 million deaths (4). 

From a molecular perspective, breast cancer is a heterogeneous disease 
classified into distinct subtypes based on gene expression profiles and 
biomarker presence. The main molecular subtypes include luminal A 
and B tumors, which express estrogen receptor (ER) and progesterone 
receptor (PR) in various combinations; human epidermal growth 
factor receptor 2 (HER2)-enriched tumors, which are characterized 
by the overexpression of HER2; and triple-negative breast cancer 
(TNBC), which lacks ER/PR/HER2 expression (5). Molecular 
classification has been shown to be critical for therapeutic guidance 
and prognosis since HER2-positive and TNBC tumors typically 
exhibit more aggressive behavior and differential treatment responses 
(6). Owing to the heterogeneity of TNBC, Lehmann et al. (7) 
proposed a TNBC sub-classification system comprising six subtypes: 
basal-like 1/2, mesenchymal/mesenchymal-like, luminal androgen 
receptor (LAR), and an immunomodulatory group, each displaying 
unique molecular profiles with variability in prognosis/treatment 
sensitivity; some show increased chemotherapy responsiveness, whereas 
others are correlated with increased relapse risk. Another widely 
used classification, prediction analysis of microarray 50 (PAM50), 
categorizes breast cancers into luminal A/B, HER2-enriched, basal-
like or normal-like subtypes, using a 50-gene transcriptional panel. 
This framework is clinically relevant because it provides insights into 
tumor behavior and aids in therapeutic decision-making (8). Although 
TNBC is frequently considered synonymous with the basal subtype, 
studies indicate an approximately 80% overlap between these two 
categories. This high correlation suggests that different classification 
techniques may lead to distinct interpretations of tumor behavior. 
However, given their significant molecular and clinical similarities, it is 
common for findings from TNBC-focused studies to be extrapolated 
to basal subtypes and vice versa. This widely adopted practice arises 
because researchers often access distinct datasets, some of which are 
based on immunohistochemical classification (TNBC) and others 
on transcriptional profiling (basal). Thus, extrapolation serves as a 
pragmatic tool to broaden the applicability of results despite limitations 
in standardized classification methods (9).

The TNBC/basal subtype represents the most challenging entity in 
oncological management and is characterized by complex molecular 
heterogeneity, the absence of specific therapeutic targets, high 
aggressiveness, elevated recurrence rates and reduced five-year overall 
survival (OS). Despite these therapeutic hurdles, recent advances in 
targeted immunotherapy with poly (ADP-ribose) polymerase (PARP) 
inhibitors and combination approaches have emerged as promising 
strategies (10). In this context, bioprospecting through “omics” data 
analysis has become an important auxiliary strategy, contributing 
to novel diagnostic/prognostic biomarker identification, mapping 
underexplored oncogenic pathways and uncovering potential molecular 
targets, thereby offering innovative perspectives for understanding this 
tumor subtype (11). 

The ropporin-1 (ROPN1) gene was initially identified as a regulator 
of sperm motility and was first described in human and murine 
testicular tissues. Current annotations indicate that it encodes a 
protein predominantly expressed in male reproductive tissues, with 
functional roles linked to sperm flagellum axoneme formation (12). 
Subsequent studies revealed ROPN1 expression in diverse reproductive 
tissues at relatively low levels (13, 14). In the context of breast cancer, 
transcriptomic data suggest differential ROPN1 expression patterns 
between normal and tumor tissues, with overexpression associated 
with aggressive malignancies, particularly TNBC subtypes. While the 
exact mechanistic contribution of ROPN1 to tumorigenesis remains 
incompletely understood, its established roles in cellular motility 
pathways may facilitate invasive/metastatic processes (13).

Materials and Methods

Identification of ROPN1

GSE76275 was interrogated via GEO2R (15, 16) to identify DEGs 
between TNBC and non-TNBC using Benjamini-Hochberg-adjusted 
p<0.05 and |log2FC|≥1.5. ROPN1, among the most dysregulated, was 
selected for focused TNBC expression and functional analyses.

The Cancer Genome Atlas (TCGA) Data Analysis

TCGA Firehose Legacy data (n = 1108) were retrieved via cBioPortal, 
excluding 12 male patients, five without age and four without ROPN1 
expression data, yielding 1087 female cases. ROPN1 levels were merged 
with clinicopathological data and PAM50 calls from Xena by barcode 
(17). Cases were dichotomized at the median into low (≤median) and 
high (>median) groups. Categorical associations used χ²; continuous 
data were log-transformed to z-scores (RNA-Seq V2 RSEM), tested 
for normality (Shapiro-Wilk) and analyzed by Student’s t/ANOVA or 
Mann-Whitney/Kruskal-Wallis. HM450 β-values at the ROPN1 locus 
were compared across PAM50 subtypes and correlated with expression 
via Spearman’s test.

Study Methodology: Sweden Cancerome Analysis Network-Breast 
(SCAN-B) Analysis

RNA-seq from SCAN-B [GSE96058; n=3,678; n=3,273 tumors 
after excluding replicates/NAs; median follow-up 52 months (18)] 
were processed in R (gtsummary) (19). ROPN1 expression was again 
dichotomized at the median; Wilcoxon rank-sum and χ² tests assessed 
clinicopathological associations. Optimal cut-offs were derived via 
survminer residual-minimization (20) to generate Kaplan-Meier 
curves and Cox models (survival package; p<0.05), with analyses 
stratified by basal subtype and chemotherapy status.

GEO Database Analysis

Five GEO datasets (GSE76275, GSE21653, GSE32646, GSE18864, 
GSE43358) were retrieved and analyzed via GEO2R to compare 
ROPN1 probe-specific expression (224191_x_at, 231535_x_at, 
233203_at) between groups. Post-analysis outputs were exported and 
plotted in GraphPad Prism 9 boxplots with consistent scaling and 
outlier thresholds to visualize cohort-wise expression differences.

Functional Enrichment Analysis and Protein-Protein Interaction 
Network

To elucidate ROPN1’s molecular interactions, we performed 
comprehensive correlation analyses via cBioPortal followed by gene 
selection for subsequent protein-protein interaction (PPI) network 
modeling, using STRING-db (https://www.string-db.org/). The 
selected genes were subjected to rigorous PPI network construction and 



pathway enrichment analysis with a stringent interaction confidence 
threshold (≥0.4) to ensure biological relevance (21). Using STRING-
db, potential PPI interaction networks were mapped followed by 
visualization and computational refinement through Cytoscape 3.10.1 
(www.cytoscape.org/). 

MethSurv

MethSurv is an R Shiny web portal that uses TCGA CpG beta values 
(0–1) to perform univariate and multivariate survival analyses with 
built-in visualization and clustering, with no coding or extra software 
required (22). In the present study, MethSurv was used to assess 
survival outcomes using the invasive breast cancer dataset from TCGA, 
incorporating ROPN1 as a focal point of our analyses.

Cell Line Culture and Treatment

MCF10A (ATCC CRL-10317) cells were maintained in 1:1 DMEM/
F12 supplemented with 5% horse serum, 0.5 μg/mL hydrocortisone, 
10 μg/mL insulin, 20 ng/mL EGF and 100 ng/mL cholera toxin. 
Hs578T (ATCC HTB-126), MDA-MB-231 (ATCC HTB-26), SK-
BR-3 (ATCC HTB-30), HCC70 (ATCC CRL-2315), MCF7 (ATCC 
HTB-22), BT-474 (ATCC HTB-20) and BT-549 (ATCC HTB-
122) were cultured in DMEM or RPMI 1640 with 10% FBS and 
1% penicillin-streptomycin. All lines were incubated at 37 °C, 5% 
CO2, with medium renewed every 48 h until 50–60% confluence. 
Mycoplasma testing was performed before and after experiments; 
subcultures used 0.25% trypsin-EDTA.

Concentrations of 5-aza-2′-deoxycytidine (5-aza) and trichostatin 
A (TSA) were set by Alamar Blue assays to avoid morphological or 
growth alterations. Cisplatin, doxorubicin and paclitaxel were applied 
at ½ IC50 [CancerRxGene (23)]; SK-BR-3 dosing was performed 
as described by Hai et al. A single 6 Gy fraction was delivered via 
an RS2000 irradiator with Gafchromic dosimetry, followed by 48 h 
recovery and RNA isolation (SV Total RNA, Promega).

cDNA was synthesized from 2 µg RNA (High-Capacity Kit, Thermo 
Fisher) and quantitative polymerase chain reaction (qPCR) performed 
(SYBR Green, Applied Biosystems 7500) using primers for ROPN1 
(NM_001394219.1; F: 5′-CCAAAGCCGCCATTAGGGT-3′, 
R: 5′-GGCTGCCCACTGGATGAG-3′) and GAPDH 
(NR_152150.2; F: 5′-GACTGTGGTCATGAGTCCTCCC-3′, R: 
5′-CAAGATCATCAGCAATGCCTCC-3′). Relative expression was 
normalized to GAPDH and calculated by ΔΔCt in triplicate.

Statistical Analysis

Statistical analysis was performed using specialized software. This 
included SPSS, version 25.0 (IBM Inc., Armonk, NY, USA) and 
GraphPad, version 7 (California, USA). Data normality was assessed 
by Shapiro-Wilk test. Categorical variables were compared using χ² 
test; continuous variables employed Student’s t-test or ANOVA for 
normally distributed data and Mann-Whitney or Kruskal-Wallis tests 
otherwise. Associations were evaluated by Spearman’s (non-parametric) 
rank correlation. Survival outcomes were estimated via Kaplan-Meier 
curves with log-rank testing and multivariate hazard ratios (HRs) 
calculated by Cox proportional hazards regression. All tests were two-
tailed with significance defined as p<0.05.

Results

Differences Observed in TCGA Data

It was observed that high ROPN1 expression was significantly 
associated with key clinical and pathological characteristics. Patients 

in the high ROPN1 subgroup were more frequently premenopausal 
(p = 0.0027) and exhibited a predominance of hormone receptor-
negative tumors (ER-/PR-, p<0.0001) and HER2-negative status 
(p<0.0001). Furthermore, high ROPN1 expression levels were 
strongly correlated with basal-like and normal-like subtypes based 
on the PAM50 classification (p<0.0001). Among patients with 
TNBC, the majority exhibited high ROPN1 expression (p<0.0001). 
Differences in histological type were significant (p = 0.0013), whereas 
TNM staging did not show significant variation between groups (p = 
0.2276) (Table 1).
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Table 1. Clinicopathological characteristics of patients 

with breast cancer derived from the TCGA database and 

their associations with ROPN1 expression levels

Variables Low High p

n n

Age

≤50 132 24.30 201 37.00 <0.0001

>50 412 75.70 342 63.00

Menopause status

Pre 101 20.60 129 26.70 0.0027

Peri 13 2.60 27 5.60

Post 377 76.80 327 67.70

Cancer type detailed

IDC 418 77.00 383 70.50 0.0013

ILC 80 14.70 126 23.20

Other 45 8.30 34 6.30

TNM stage

Stage 1 80 15.00 100 18.80 0.2276

Stage 2 309 58.10 307 57.80

Stage 3 131 24.60 117 22.00

Stage 4 12 2.30 7 1.30

ER status by IHC

Negative 44 8.60 194 37.00 <0.0001

Positive 469 91.40 330 63.00

PR status by IHC

Negative 113 22.10 228 43.60 <0.0001

Positive 398 77.90 295 56.40

HER2 status by IHC

Negative 250 70.00 308 85.10 <0.0001

Positive 107 30.00 54 14.90

PAM50 classification

Basal 5 1.10 135 35.20 <0.0001

HER2 45 9.90 22 5.70

Luminal A 243 53.60 173 45.20

Luminal B 158 34.90 31 8.10

Normal-like 2 0.40 22 5.70  
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The pattern of ROPN1 expression was analyzed in different 
clinicopathological contexts, as illustrated in the graphs (Figure 1A-
F). In each graph, the expression of ROPN1 was compared among 
subgroups with distinct clinical characteristics and significant 
variations emerged. ROPN1 mRNA expression was higher in ER-
negative, PR-negative, and HER2-positive tumors compared with 
their opposite counterparts (all p<0.0001; Figure 1A-1C). Expression 
varied by menopausal status (p = 0.0171; Figure 1D) and was elevated 
in invasive ductal carcinoma versus other histological types (p = 
0.0126) (Figure 1E). Basal-like tumors showed the highest ROPN1 
levels among molecular subtypes (p<0.0001) (Figure 1F). Inverse 
correlation between ROPN1 mRNA levels and promoter methylation 
was observed in unstratified TCGA breast tumors (Figure 2A; r = 

−0.41; p<0.0001) and was stronger in basal-like tumors (Figure 2B; 
r = −0.55; p<0.0001). Stratification by clinical subtype highlighted 
significantly lower methylation in basal-like versus HER2-enriched, 
luminal A/B and normal-like tumors (Figure 2C, D). Survival analysis 
via MethSurv showed that hypermethylation at cg00101712 and 
cg09298623 correlated with improved prognosis [Figure 2E; HR = 
0.59; 95% confidence interval (CI): 0.38–0.92; p = 0.016; Figure 2F; 
HR = 0.49; 95% CI: 0.31–0.78; p = 0.0014]. 

Global correlation via cBioPortal identified 14,462 ROPN1-associated 
genes; the top 20 positive and 20 negative correlates were input into 
STRING to generate a PPI network (Figure 2G). Positively linked 
nodes included ROPN1B, SOX10, FABP7, SOSTDC1, SFRP1, 
BCL11A, FOXC1 and MIA; negatively linked nodes comprised BCAS1, 
GATA3, AR, ARMT1, FOXA1, XBP1, WWP1, ESR1 and TMBIM6. 
STRING enrichment highlighted glandular morphogenesis and 
hormonal response pathways, prostate gland epithelium and glandular 
acinus development; branched and epithelial tube morphogenesis; and 
cellular response to estrogenic stimuli, underscoring the interplay of 
gland architecture and hormone signaling in breast cancer progression 
(Figure 2H).

Prognostic Insights from the SCAN-B Study on ROPN1 Expression 
in Breast Cancer

SCAN-B RNA-seq data recapitulated TCGA associations: High (n 
= 1,636) versus low (n = 1,637) ROPN1 expression groups differed 
in age ≤55 y (36%; p<0.001), tumor size ≤17 cm (56%; p<0.001), 
ER+ (89% versus 96% and PR+ 84% versus 90%; p<0.001), luminal 
A enrichment in high expression (55%) and luminal B/HER2 in 
low expression (p<0.001), endocrine therapy use in high ROPN1 
expression  (71%; p<0.001) and chemotherapy in low expression 

Figure 1. ROPN1 expression patterns in different clinical-pathological contexts of breast cancer. The graphs show comparisons of ROPN1 
expression among subgroups for (A) estrogen receptor, (B) progesterone receptor, (C) HER2, (D) menopausal status, (E) histological type, and 
(F) molecular subtypes according to the PAM50 classification. Dunn’s multiple comparisons test was applied, and differences between the 
basal and HER2, luminal A or luminal B subtypes were significant (p<0.0001), whereas only the difference between the basal and normal-like 
subtypes was not significant (p = 0.2751)

ER: Estrogen receptor; PR: Progesterone receptor; HER2: Human epidermal growth factor receptor type II; Peri: Perimenopausal; Pre: Premenopausal; Post: 
Postmenopausal; IDC: Invasive ductal carcinoma; ILC: Invasive lobular carcinoma; B: Basal; H: HER2; LA: Luminal A; LB: Luminal B; N: Normal-like

Table 1. Continued

Variables Low High p

n n

TNBC status

nTNBC 496 98.2 356 76.9 <0.0001

TNBC 9 1.8 107 23.1

ER: Estrogen receptor; HER2: Human epidermal growth factor receptor 2; 
IDC: Invasive ductal carcinoma; IHC: Immunohistochemistry; ILC: Invasive 
lobular carcinoma; PAM50: Prediction analysis of microarray 50 (50-gene 
panel used for molecular classification); Peri: Perimenopausal; Post: 
Postmenopausal; PR: Progesterone receptor; Pre: Premenopausal; TNBC: 
Triple-negative breast cancer; TNM: Tumor, node, metastasis (staging 
system for tumor size, lymph node involvement, and metastasis); TCGA: 
The Cancer Genome Atlas



(62%; p = 0.031) groups; nodal status was comparable (63% negative; 
p>0.9) (Supplementary Table1).

ROPN1 mRNA was elevated in ER−, PR− and HER2− tumors  
(all p<0.0001), and in tumors with high Ki-67 staining (p = 0.0191), as 
well as in tumors in which endocrine therapy was not used (p<0.0001). 
Expression was highest in basal and HER2-enriched subtypes, 
decreasing through luminal A and B and normal-like (p<0.0001), 
indicating an association with aggressive phenotypes (Supplementary 
Figure 1).

High ROPN1 expression predicted poorer OS in SCAN-B (Figure 
3A; HR = 2.17; 95% CI: 1.61–2.94; p<0.0001), with a pronounced 
effect in basal tumors (Figure 3B; HR = 1.85; 95% CI: 1.02–3.33; p 
= 0.041). In chemotherapy-treated patients, high ROPN1 remained 
adverse (Figure 3C; HR = 2.86; 95% CI: 1.28–6.25; p = 0.01), and in 
untreated patients the mortality risk was even higher (Figure 3D; HR 

= 4.55; 95% CI: 1.33–14.29; p = 0.01). 

Probes 224191_x_at (Figure 3E), 231535_x_at (Figure 3F) and 
233203_at (Figure 3G) showed consistent ROPN1 overexpression 
in TNBC versus non-triple negative subtypes across GSE76275, 
GSE21653, GSE32646, GSE18864 and GSE43358, underscoring its 
association with invasive tumor phenotypes.

Transcriptional Modulation of ROPN1 in Breast Cancer Cell Lines

After culturing non-tumoral mammary tissue cell lines and other 
representative malignant phenotypes were cultured, total RNA 
extraction was performed for reverse transcription-qPCR analysis. 
When MCF10A was used as a reference, SKBR3 and MCF7 cells 
exhibited ROPN1 expression levels that were more than 2,000 times 
greater. The BT474, HS-578T, BT549, and MDA-MB-231 lines 
expressed increases ranging from 0.5 to approximately 60 times. 
Notably, among those analyzed, HCC70 demonstrated a ROPN1 
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Figure 2. Methylation profile of ROPN1 in breast cancer patients. (A) Correlation between ROPN1 mRNA levels and methylation in a 
population of breast cancer patients. (B) Specific correlation for the basal subtype of breast cancer, where the negative correlation is more 
pronounced. (C) Methylation pattern of ROPN1 according to the PAM50 classification. (D) Comparison of ROPN1 methylation in the clinical 
profiles of basal and non-basal breast cancer patients. (E) OS analysis based on the methylation pattern of the ROPN1 body opening site 
cg00101712. (F) OS analysis based on the methylation profile of ROPN1 in TSS1500 N-shore cg09298623. (G) The PPI network was constructed 
using the STRING database, employing the top 40 genes correlated with ROPN1 from the TCGA Firehose Legacy database. Red represents 
genes positively correlated with ROPN1, whereas green indicates genes negatively correlated with ROPN1. (H) Pathway enrichment analysis

B: Basal; H: HER2; LA: Luminal A; LB: Luminal B; N: Normal-like; PPI: Protein-protein interaction; PAM50: Prediction analysis of microarray 50; HER2: Human epidermal 
growth factor receptor 2
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expression level over 7,000 times greater than that of MCF10A, 
highlighting the increased expression of this gene in certain tumor 
contexts (Figure 4A).

The cell lines were subsequently treated with chemotherapeutics and 
radiotherapy to evaluate any transcriptional modifications. MCF7 cells 
presented a greater fold change than did wild-type cells (untreated), 
with increases of 23%, 3%, and 26% after exposure to cisplatin, 
doxorubicin, and paclitaxel, respectively. In contrast, irradiation with 
6 Grays resulted in a drastic decrease in ROPN1 (Figure 4B). For the 
SKBR3 line, there was a decrease of approximately 40% after both 
cisplatin and paclitaxel treatment, although doxorubicin and radiation 
did not reduce ROPN1 expression levels in this cell line (Figure 4C). 
In BT474 cells, cisplatin and doxorubicin induced decreases of 48% 
and 38%, respectively. Conversely, irradiation led to a 25% increase in 
the transcript level (Figure 4D). For the HCC70 line, which, among 
the lines used, was the one that expressed ROPN1 at the highest level, 
all the treatments induced a decrease in the level of this transcript, 
which was most evident with cisplatin, with which a 63% reduction 
was achieved (Figure 4E). Similarly, HS578T cells also exhibited a 
reduction of approximately 50% in response to cisplatin, doxorubicin, 
and irradiation and a 30% decrease after paclitaxel treatment (Figure 
4F). BT549 cell expression of ROPN1 was were reduced by 21% 
only after cisplatin treatment and significantly increased by 197% 
and 293% after doxorubicin and paclitaxel treatment, respectively 
(Figure 4G). Finally, for MDA-MB231 cells, in which the expression 
levels were close to those found in the MCF10A reference cells, all 
the treatments induced a significant increase in ROPN1 (Figure 4H). 

The HS578T line was also treated with 5-aza and TSA, which resulted 
in increases in the expression of ROPN1 by 9.5-fold and 4.9-fold, 
respectively (Figure 4I).

Discussion and Conclusion

Breast cancer remains a leading cause of female cancer mortality, with 
TNBC/basal tumors exhibiting high recurrence and chemoresistance. 
Biomarker discovery is therefore essential for enhanced risk stratification 
and therapeutic decision-making. ROPN1 emerged as a candidate, 
showing elevated expression in TNBC/basal cases and consistent 
association with poor survival. Our data indicate that high ROPN1 
expression is consistently associated with poor OS in breast cancer 
patients, especially those with basal-like subtype, which is known for its 
high degree of aggressiveness and poor prognosis. Risk analysis showed 
that patients with high ROPN1 expression who were not treated with 
chemotherapy had an HR of 4.55 (Figure 3D), indicating a robust 
association between ROPN1 expression and unfavorable outcomes. 
Among patients who received chemotherapy, high levels of ROPN1 
also correlated with poorer prognosis (HR = 2.53). These findings 
position ROPN1 as a potent prognostic marker of aggressive breast 
cancer and a potential predictor of limited chemotherapy response, 
underscoring the need for personalized treatment strategies.

Previous findings by Liu et al. (13) showed that ROPN1 is 
overexpressed in TNBC, enhancing migration, invasion and 
metastasis via RhoA activation. Overexpression increased actin stress 
fibers and contractility, while ROPN1 silencing reduced invasiveness 

Figure 3. Associations between ROPN1 expression and survival in breast cancer patients. (A) Overall survival analysis of all breast cancer 
patients. (B) Stratified survival of patients with the basal subtype of breast cancer. (C) Impact of ROPN1 expression on the survival of basal 
breast cancer patients undergoing chemotherapy. (D) Comparative survival analysis of basal breast cancer patients who did not receive 
chemotherapy. Data were obtained from the GSE96058 study and analyzed via Kaplan-Meier curves. The “Low” and “High” categories refer to 
patient classification based on ROPN1 gene expression levels, with “Low” indicating expression below the established cut-off value, and “High” 
indicating expression above this threshold. Expression pattern of ROPN1 in different cohorts. The probes 224191_x_at (E), 231535_x_at (F), 
and 233203_at (G) were evaluated using datasets available in the GEO database, identified as GSE76275, GSE21653, GSE32646, GSE18864, 
and GSE43358, respectively



and metastasis in vitro and in vivo. Kortleve et al. (24) validated 
ROPN1 as a prognostic and therapeutic target in TNBC, showing 
strong expression in >90% of primary and metastatic tumors, with 
minimal expression in normal tissues, except testis. In patient-derived 
and murine models, anti-ROPN1 TCR-T cells effectively eliminated 
ROPN1+ tumors, outperforming cisplatin and sacituzumab govitecan. 
ROPN1 expression correlated with metastasis and poor prognosis. 
These findings align with our results, supporting the translational 
value of ROPN1 as a biomarker and therapeutic target in TNBC.

In our PPI analysis, ROPN1B and SOX10 emerged as key genes 
positively correlated with ROPN1. ROPN1B, a cytoskeleton-related 
protein sharing 96% sequence homology with ROPN1, may act 
synergistically to promote invasiveness. Da Gama Duarte et al. (25) 
reported a strong correlation between ROPN1 and ROPN1B in 
melanoma (r = 0.86, p = 8.71×10-4), associating both with motility, 
chemoresistance and immune modulation. SOX10, which also 
correlated with ROPN1, drives mesenchymal traits and drug resistance 
in TNBC (26-28), suggesting that their co-expression may enhance 
tumor plasticity and therapeutic evasion. 

The network also included clinically relevant genes, such as ESR1, 
AR and FOXA1, all downregulated or absent in TNBC/basal tumors. 

ESR1, a key marker in luminal subtypes, serves as both a prognostic 
indicator and therapeutic target. AR, though expressed in a subset of 
TNBCs, lacks the favorable impact seen with ESR1 but may serve as 
a target in LAR tumors (10). FOXA1, a transcriptional cofactor for 
both ESR1 and AR, promotes epithelial identity in luminal cancers but 
is minimally expressed in TNBC, supporting its undifferentiated and 
aggressive profile (29, 30).

Chemotherapeutic treatments and radiotherapy have heterogeneous 
effects on ROPN1 levels, depending on the cell line and the therapeutic 
agent used. Among the parental lines analyzed, HCC70 exhibited an 
increase in ROPN1 expression of more than 7,000 times, highlighting 
the unique behavior of the TNBC subtype, which is highly aggressive 
and has a poor prognosis (7). This overexpression may be associated 
with the role of ROPN1 in fundamental biological processes, such 
as cell motility, which directly contributes to tumor migration and 
invasion. Indeed, previous studies have demonstrated that ROPN1 
plays an active role in tumor progression, especially in TNBC. Wu 
and collaborators reported that the overexpression of ROPN1 was 
associated with a significant increase in cell migration and invasion, 
which is mediated by the activation of RhoA, a GTPase essential 
for cytoskeletal organization (24). This activation leads to actin 
reorganization, promoting the formation of cellular protrusions and 
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Figure 4. Expression of ROPN1 in breast cancer cell lines and the effects of different treatments. (A) Basal transcription levels of ROPN1 in a 
panel of mammary cell lines, including distinct tumor subtypes. (B-H) Variation in ROPN1 expression after treatment with cisplatin, doxorubicin, 
paclitaxel, or radiotherapy. (I) Modulation of ROPN1 expression in response to the epigenetic-acting drugs 5-Aza and trichostatin A
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facilitating tumor spread. Furthermore, in vivo models have shown 
that ROPN1 not only enhances metastasis but also that its suppression 
significantly reduces tumor dissemination (24).

By analyzing the effects of chemotherapeutic agents on a selection of 
cell lines, we propose a relevant translational hypothesis. We observed 
that, under certain conditions, treatments did not reduce or even 
increased the levels of ROPN1, as noted in BT549 cells after exposure 
to doxorubicin and paclitaxel. Considering the findings of Wu et al. 
on the prometastatic role of ROPN1, these results suggest that the 
persistence or elevation of this transcript following chemotherapy 
may represent an adaptive mechanism of tumor cells, promoting 
therapeutic resistance and enhancing their migratory and survival 
capabilities. This hypothesis becomes even more pertinent when 
the clinical survival data of patients treated with chemotherapy are 
reviewed (Figure 3C), where high expression of ROPN1 was associated 
with a poorer prognosis, even after treatment.

The observed relationship between ROPN1 expression and its 
methylation in breast cancer suggests that epigenetic mechanisms may 
be involved in the regulation of this gene, particularly in the context 
of more aggressive subtypes, such as HER2-positive breast cancer and 
TNBC/basal cancer. This pattern of hypomethylation associated with 
ROPN1 overexpression indicates that DNA methylation might act as 
a modulator of gene expression in highly proliferative cancers with 
increased invasive capacity. To date, only the study by Atanackovic and 
colleagues has evaluated possible associated epigenetic mechanisms 
through pharmacological treatment in cell lines derived from acute 
myeloid leukemia (AML) (31). In their study, treatment with TSA and 
decitabine or their combination did not result in positive modulation 
of ROPN1, which is poorly expressed in AML, suggesting that 
other regulatory mechanisms may occur in these lines, such as post-
transcriptional regulation mediated by microRNAs or interactions 
with inhibitory transcription factors. Of note, our in vitro experiments 
revealed a significant increase in ROPN1 expression after treatment 
with 5-aza or TSA, with elevated levels of 9.5- and 4.9-fold, respectively. 
These results reinforce our in silico findings and suggest a distinct 
epigenetic role of ROPN1 in breast cancer, especially considering the 
contrast with the AML model. These data highlight the importance 
of investigating how the epigenetic deregulation of ROPN1 influences 
tumor behavior in different biological contexts, especially in more 
aggressive breast subtypes, and exploring whether hypomethylation 
and overexpression of this gene have direct functional impacts on 
tumor progression and therapeutic response. Moreover, we observed 
that low methylation in the regions cg09298623 and cg00101712 
was associated with worse OS in patients with this phenomenon. The 
increased expression of ROPN1, which is mediated by a reduction in 
methylation, may represent a phenotypic adaptation of the tumor that 
facilitates cell invasion and metastasis, which can lead to a worsened 
clinical outcome for these patients.

Further studies are needed to clarify how epigenetic changes drive 
tumor aggressiveness and to define the functional role of ROPN1 in 
breast cancer progression and therapy response. While our multicohort 
analysis offers strong associative evidence, functional validation (e.g., 
CRISPR/Cas9) is required to confirm causality in chemoresistance. 
Prospective cohorts and mechanistic studies will be key to validating 
ROPN1 expression as a predictive biomarker, potentially guiding 
patient stratification and improving therapeutic outcomes in high-risk 
cases.

Study Limitations

This study has limitations, including the absence of validation in 
patient-derived tumor samples and reliance on public gene expression 
datasets. In addition, the interactions between ROPN1, tumor 
subtypes, and therapeutic contexts, especially drug combinations, 
remain incompletely characterized. Further studies are needed to 
validate these findings and clarify the role of ROPN1 in breast cancer 
biology.

ROPN1 is markedly overexpressed in hormone receptor–negative and 
triple-negative/basal-like breast cancers, where it predicts significantly 
poorer OS. Its prognostic value persists regardless of chemotherapy 
status, high ROPN1 expression doubles mortality risk in treated patients 
and quadruples it when treatment is absent, underscoring its utility for 
risk stratification. An inverse relationship between DNA methylation 
and ROPN1 expression further links hypomethylation to adverse 
outcomes. In vitro, ROPN1 expression following chemotherapeutics 
and radiotherapy was variable in different cell lines, with some agents 
inducing upregulation suggesting adaptive resistance mechanisms. 
Collectively, these findings position ROPN1 and its protein product 
as both a robust prognostic and predictive biomarker and a candidate 
therapeutic target for high-risk breast cancer subgroups.
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Supplementary Figure 1. Expression pattern of ROPN1 in patients with breast cancer from the Sweden Cancerome Analysis Network-Breast 
(SCAN-B) study. Transcriptional levels of ROPN1 based on (A) estrogen receptor, (B) progesterone receptor, (C) human epidermal growth 
factor receptor 2, (D) the proliferation marker Ki-67, (E) endocrine treatment, and (F) Prediction analysis of microarray 50 classification
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Supplementary Table 1. Clinicopathological characteristics of patients with breast cancer derived from the Sweden 

Cancerome Analysis Network-Breast study and their associations with ROPN1 expression 

Variables High   Low   p

n = 1.636 % n = 1.637 %

Age <0.001

≤55 527 36 372 25

>55 955 64 1.115 75

Tumor size group <0.001

≤17 cm 813 56 705 48

>17 cm 651 44 768 52

Lymph node status >0.9

Negative 906 63 910 63

Positive 533 37 531 37

ER status <0.001

No 152 11 62 4

Yes 1.198 89 1.371 96

PR status <0.001

No 205 16 142 10

Yes 1.091 84 1.219 90

HER2 status 0.009

No 1.261 88 1.229 85

Yes 164 12 214 15

Ki-67 status 0.001

No 318 46 250 37

Yes 372 54 420 63

NHG <0.001

G1 259 18 190 13

G2 680 47 711 48

G3 505 35 565 39

PAM50 subtype <0.001

Basal 279 19 29 2

HER2 91 6 204 14

Luminal A 821 55 680 46

Luminal B 103 7 563 38

Normal-like 188 13 11 0.7

Chemo treated 0.031

No 848 58 911 62

Yes 622 42 568 38

Endocrine treated <0.001

No 424 29 228 15

Yes 1.045 71 1.251 85  

Pearson’s chi-squared test; ER: Estrogen receptor; PR: Progesterone receptor; HER2: Human epidermal growth factor receptor 2; PAM50: Prediction 
analysis of microarray 50 (50-gene panel used for molecular classification); NHG: Nottingham histologic grade


