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Key Points

•	 Invasive breast carcinoma may progress after initial treatment.

•	 Positron emission tomography/computed tomography (PET/CT) parameters obtained before initial treatment can predict disease progression.

•	 Combining PET/CT texture features with clinicopathological parameters improves prediction of progression.

ABSTRACT

Objective: Breast cancer is the most common cancer and the leading cause of cancer-related deaths in women. Texture analysis provides crucial prognostic 
information about many types of cancer, including breast cancer. The aim was to examine the relationship between texture features (TFs) of 2-deoxy-2[18F]
fluoro-D-glucose positron emission tomography (PET)/computed tomography and disease progression in patients with invasive breast cancer. 

Materials and Methods: TFs of the primary malignant lesion were extracted from PET images of 112 patients. TFs that showed significant differences 
between patients who achieved one-, three-, and five-year progression-free survival (PFS) and those who did not were selected and subjected to the least 
absolute shrinkage and selection operator regression method to reduce features and prevent overfitting. Machine learning (ML) was used to predict PFS 
using TFs and selected clinicopathological parameters.

Results: In models using only TFs, random forest predicted one-, three-, and five-year PFS with area under the curve (AUC) values of 0.730, 0.758, and 
0.797, respectively. Naive Bayes predicted one-, three-, and five-year PFS with AUC values of 0.857, 0.804, and 0.843, respectively. The neural network 
predicted one-, three-, and five-year PFS with AUC values of 0.782, 0.828, and 0.780, respectively. These findings indicated increased AUC values when 
the models combined TFs with clinicopathological parameters. The lowest AUC values of the models combining TFs and clinicopathological parameters 
when predicting one-year, three-year, and five-year PFS were 0.867, 0.898, and 0.867, respectively.

Conclusion: ML models incorporating PET-derived TFs and clinical parameters may assist in predicting progression during the pre-treatment period in 
patients with invasive breast carcinoma. 
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Introduction

Breast cancer is the most common cancer and the leading cause of 
cancer-related deaths in women (1). Accurate staging of the disease 
is essential for successful treatment. 2-deoxy-2[18F]fluoro-D-glucose 
([18F]FDG) positron emission tomography/computed tomography 
(PET/CT) is frequently used in oncology for purposes, such as staging 
various cancer types, evaluating response to treatment, determining 
radiotherapy fields, and detecting recurrence (2). Routine use of 
PET/CT is not recommended for patients with stage I-II or operable 

stage III breast cancer (3-5). However, PET/CT may be helpful when 
findings on other imaging modalities used for staging are uncertain. 
In addition, PET/CT is able to delineate many clinicopathological 
prognostic parameters in breast cancer (6).

Texture analysis (TA) of medical images, also known as radiomics, has 
recently become one of the most popular topics in research. TA allows 
medical images to provide more information than the human eye can 
detect (7). TA of PET/CT offers prognostic information about various 
malignancies, including breast cancer (8-12). In breast cancer, PET/
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CT-based TA has been used to characterize lesions, evaluate tumor 
biology, including grade and immunohistochemical marker expression, 
predict response to neoadjuvant chemotherapy, and predict disease-
free survival (DFS) (9). Currently, TA is primarily used for preclinical 
and research purposes because improvements and standardization of 
methodology are needed before TA can be integrated into clinical 
workflow. Early studies in the field of TA in breast cancer focused on 
predicting histopathological and immunohistochemical parameters, 
as well as treatment responses. Nevertheless, there are only a limited 
number of studies on TA and breast cancer survival. The aim of this 
study was to examine the relationship between [18F]FDG PET/CT-
derived TA and progression-free survival (PFS) in invasive breast 
carcinoma using machine learning (ML)-based analysis.

Materials and Methods

Patients

This study retrospectively identified and included 290 female patients 
diagnosed with invasive breast carcinoma who underwent PET/CT 
for staging at a single center between 2019 and 2022. During this 
period, PET/CT scans were routinely performed for staging purposes 
in female patients with invasive breast cancer whose primary tumor 
was larger than one centimeter. The exclusion criteria were: Inability 
to determine disease progression due to inaccessible medical records; 
inability to perform TA due to the metabolic volume of the primary 
tumor being less than 64 voxels on PET/CT images; and presence of a 
second malignancy. After applying these criteria, a total of 112 patients 
were included in the study (Figure 1). 

PET/CT Imaging Protocol

Following six hours of fasting, patients with a blood glucose level 
below 200 mg/dL received an intravenous injection of 0.1 mCi/kg 
[18F]FDG. The patients were then asked to rest in a quiet, darkened 
room for approximately 60 minutes. PET/CT imaging was performed 
from the vertex to the mid-thigh using a Siemens Biograph mCT 20 
PET/CT system (Siemens, Germany). First, nondiagnostic CT images 
were obtained using the following parameters: 120 kVp, 50 mAs, and 
5-mm slice thickness. PET imaging was then performed for 2 minutes 

per bed position. PET images were corrected for attenuation using 
the corresponding nondiagnostic CT images. The ordered-subset 
expectation maximization method was used for image reconstruction.

Texture Analysis

TA was performed using LIFEx software version 7.4.0 (lifexsoft.
org) by two nuclear medicine physicians with six and nine years of 
experience in oncological PET/CT interpretation. LIFEx is a freely 
available software tool widely used for TA in the medical imaging 
literature (13). Attenuation-corrected PET images were imported 
into the LIFEx program. The primary breast lesions were manually 
segmented using a three-dimensional region of interest (ROI), defined 
to correspond with radiological findings. A threshold of 40% of the 
maximum standardized uptake value (SUVmax) was used to delineate 
the ROI (Figure 2). Segmentation was independently performed by 
both nuclear medicine physicians. For spatial resampling of the ROI, 
a voxel spacing of 4×4×4 mm was applied along the x, y, and z axes. 
Image intensity was discretized into 64 gray levels with a bin width of 
0.3. Intensity rescaling was conducted using an absolute scale range 
of 0–20. Texture features (TFs) extracted from the three-dimensional 
ROI included first-order features, such as morphological, intensity-
based, local intensity-based, intensity histogram, and local intensity 
histogram, as well as second-order features such as intensity-based rim, 
intensity histogram rim, gray-level co-occurrence matrix, neighboring 
gray-tone difference matrix, gray-level run-length matrix, and gray-
level size zone matrix (Supplementary Table 1).

Determination of PFS

To determine progression, imaging findings defined from molecular 
imaging methods (PET/CT and bone scintigraphy) and morphological 
imaging methods [breast ultrasound (US), breast magnetic resonance 
imaging (MRI), and thoracic-abdominopelvic CT or MRI] obtained 
during follow-up were compared with baseline staging images. PET/
CT images were evaluated according to the PERCIST criteria, while 
CT and MRI findings were assessed according to the RECIST 1.1 
criteria (14). The appearance of new bone metastases at previously 
uninvolved non-metastatic locations on bone scintigraphy and signs of 
recurrence or progression at the primary tumor site identified through 

Figure 1. Workflow of the study

PET/CT: Positron emission tomography/computed tomography; LASSO: Least absolute shrinkage and selection operator
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mammography and/or breast US were also accepted as indicators 
of progression. PFS was defined as the time interval between the 
date of breast cancer diagnosis and the first radiological evidence of 
progression, based on the criteria outlined above. For patients without 
progression, PFS was calculated as the time between the date of 
diagnosis and the date of last follow-up. The number of patients who 
achieved one-, three-, and five-year PFS was recorded.

The Recep Tayyip Erdogan University Ethics Committee approved 
this study (approval no: 2022/228, date: 22.12.2022). The ethical 
committee waived the requirement for informed consent as the 
study was retrospective. All procedures performed in this study were 
in accordance with the ethical standards of the institutional and/or 
national research committee and with the 1964 Helsinki Declaration 
and its later amendments.

Statistical Analysis and ML

All statistical analyses were performed using SPSS, version 24 (IBM 
Corp., Armonk, NY, USA). A p-value of <0.05 was considered 
statistically significant. The Mann-Whitney U test was used to 
compare the TFs of patients who achieved one-, three-, and five-
year PFS with those who did not. TFs with a p-value of <0.05 were 
subjected to feature reduction using the least absolute shrinkage and 
selection operator (LASSO) regression method to prevent model 
overfitting (15). To predict PFS, three ML algorithms commonly used 
in medical imaging research, specifically random forest, naive Bayes, 
and neural network, were employed using both TFs and selected 
clinicopathological parameters. ML models were developed using the 
Orange data mining toolbox (version 3.34.0).

The dataset was randomly divided into training (70% of patients) and 
testing (30% of patients) sets. The mean ages of patients with and 
without progression were compared using the independent-samples 
t-test. Categorical variables, such as estrogen receptor (ER) status, 
progesterone receptor (PR) status, human epidermal growth factor 
receptor 2 (HER2) status, and cancer stage were compared between 
these groups using the chi-square test.

All data were normalized to a 0–1 scale prior to model training. Each 
ML model was trained on the training set using 10-fold cross-validation 
and subsequently evaluated on the testing set for internal validation. 
After this initial evaluation, selected clinical parameters were added to 
the models, and their predictive performance for achieving PFS was 
re-examined.

Results

The mean age of the patients was 59±14 years. The median follow-
up period was 112 (30–311) weeks. During follow-up, progression 
occurred in 21 patients (19%) within the first year, 43 (38%) within 
three years, and 46 (41%) within five years. One-, three-, and five-
year PFS rates were 81%, 62%, and 59%, respectively. The five-year 
PFS rate was 88% in non-metastatic patients and 47% in metastatic 
patients. The majority of patients had invasive ductal carcinoma. Most 
cases were ER (+), PR (+), and HER2 (-) and had locally advanced 
breast cancer (LABC) (Table 1) (16). 

The median primary tumor size was larger in patients who did not 
achieve one-, three-, and five-year PFS compared to those who did. ER 
(+) and PR (+) rates were higher among patients who achieved three- 
and five-year PFS than in those who did not. HER2 receptor status 
was similar between patients with and without progression at all time 
points. Lastly, distant and axillary metastases at diagnosis were more 
common in patients who did not achieve one-, three-, and five-year 
PFS (Tables 2, 3, and 4).

A total of 25, 58, and 57 of the TFs showed significant differences 
between patients who achieved one-, three-, and five-year PFS, 
respectively, and those who did not. These TFs were subjected to LASSO 
regression. Selected TFs (Figure 3) and relevant clinicopathological 
parameters that differed between the two patient groups (primary 
tumor size, ER and PR status, and axillary and distant metastases) were 
then used in ML models to predict PFS at one, three, and five-years.

The higher incidence of distant metastases among patients who did 
not achieve PFS at one, three, and five years suggested that the lower 
rates of surgery and radiotherapy in these patients were a consequence 

Figure 2. Three-dimensional segmentation of the primary breast lesion using a 40% SUVmax in the LIFEx program 

SUVmax: Maximum standardized uptake value
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rather than a cause of their poor prognosis. Therefore, the history of 
surgery and radiotherapy was not included in the ML models. Among 
the models using only TFs, random forest predicted one-, three-, and 
five-year PFS with area under the curve (AUC) values of 0.730, 0.758, 
and 0.797, respectively. Naive Bayes predicted one-, three-, and five-
year PFS with AUC values of 0.857, 0.804, and 0.843, respectively. 
The neural network predicted one-, three-, and five-year PFS with 

AUC values of 0.782, 0.828, and 0.780, respectively. AUC values 
improved when clinicopathological parameters were added to the TFs 
(Figure 4 and Tables 5, 6, and 7).

Table 1. Detailed characteristics of patients

Variables

Age (years), mean ± SD 59±14

Primary tumor size 
(mm), median (minimum-
maximum)

28 (13–100)

Histopathological subtype, 
n (%)

IDC 64 (57)

ILC 4 (3)

NST 30 (27)

Others 14 (13)

ER status, n (%)

ER (+) 79 (71)

ER (-) 27 (24)

N/A 6 (5)

PR status, n (%)

PR (+) 73 (65)

PR (-) 33 (30)

N/A 6 (5)

HER2 status, n (%)

HER2 (+) 33 (30)

HER2 (-) 73 (65)

N/A 6 (5)

TNM stage, n (%)

Early * 33 (30)

Locally advanced** 49 (44)

Distant metastatic 30 (26)

Surgery history, n (%)

No surgery 32 (29)

Mastectomy 56 (50)

Breast-conserving 
surgery

24 (21)

Chemotherapy, n (%)
Yes 87 (78)

No 25 (22)

Radiotherapy, n (%)
Yes 70 (63)

No 42 (37)

Hormonal therapy, n (%)

Yes 79 (74)

No 27 (21)

N/A 6 (5)

Anti-HER2 therapy, n (%)

Yes 33 (30)

No 73 (65)

N/A 6 (5)

SD: Standard deviation; IDC: Invasive ductal carcinoma; ILC: Invasive 
lobular carcinoma; NST: No special type; ER: Estrogen receptor; PR: 
Progesterone receptor; N/A: Not available; HER2: Human epidermal 
growth factor receptor 2; TNM: Tumor, node, and metastasis

*: Includes TNM stages I, IIA, IIB, and IIIA

**: Includes TNM stages IIIB and IIIC

Table 2. Patient characteristics according to one-year PFS

Variables Patients 
who 
achieved 
one-year 
PFS (n = 91)

Patients 
who did not 
achieve one-
year PFS  
(n = 21)

p-value

Age, mean ± SD 58±13 62±14 0.253

Primary tumor 
size (mm), median 
(minimum-maximum)

25 (13–80) 40 (18–100)  0.005

Histopathological subtype, n (%)

IDC 55 (60) 9 (43)
0.222

Others 36 (40) 12 (57)

ER status, n (%)

ER (+) 67 (74) 6 (29)

0.095ER (-) 21 (23) 12 (57)

N/A 3 (3) 3 (14)

PR status, n (%)

PR (+) 62 (68) 11 (53)

0.099PR (-) 26 (29) 7 (33)

N/A 3 (3) 3 (14)

HER2 status, n (%)

HER2 (+) 27 (30) 6 (29)

0.825HER2 (-) 61 (67) 12 (57)

N/A 3 (3) 3 (14)

Axillary metastasis, n (%)

Present 53 (58) 19 (90)
0.005

Absent 38 (42) 2 (10)

TNM stage, n (%)

Early* 32 (35) 1 (5)

<0.001Locally advanced** 44 (48) 7 (33)

Distant metastatic 15 (17) 13 (62)

Surgery history, n (%)

Yes 75 (66) 5 (4)
<0.001

No 16 (15) 16 (15)

Chemotherapy, n (%)                                               

Yes 68 (61) 19 (17)
0.152

No                                                   23 (20)                           2 (2)

Radiotherapy, n (%)

Yes 62 (54) 8 (7)
0.012

No                                                     28 (26)                         14 (13)

PFS: Progression-free survival; SD: Standard deviation; IDC: Invasive ductal 
carcinoma; ER: Estrogen receptor; N/A: Not available; PR: Progesterone 
receptor; HER2: Human epidermal growth factor receptor 2; TNM: Tumor, 
node, and metastasis

*: Includes TNM stages I, IIA, IIB, and IIIA 

**: Includes TNM stages IIIB and IIIC
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Table 3. Patient characteristics according to three-year 

PFS

Variables Patients who 
achieved 
three-year 
PFS (n = 69)

Patients 
who did 
not achieve 
three-year 
PFS (n = 43)

p-value

Age, mean ± SD 57±13 60±14 0.373

Primary tumor 
size (mm), median 
(minimum-maximum)

25 (13–62) 39 (18–100) <0.001

Histopathological subtype, n (%)

IDC 42 (61) 22 (51)
0.380

Others 27 (39) 21 (49)

ER status, n (%)

ER (+) 54 (79) 25 (58)

0.021ER (-) 14 (20) 13 (30)

N/A 1 (1) 5 (12)

PR status, n (%)

PR (+) 51 (74) 22 (51)

0.013PR (-) 17 (25) 16 (37)

N/A 1 (1) 5 (12)

HER2 status, n (%)

HER2 (+) 21 (31) 12 (28)

0.941HER2 (-) 47 (68) 26 (60)

N/A 1 (1) 5 (12)

Axillary metastasis, n (%)

Present 35 (51) 37 (86)
<0.001

Absent 34 (49) 6 (14)

TNM stage, n (%)

Early* 29 (42) 4 (9)

<0.001Locally advanced** 36 (52) 15 (35)

Distant metastatic 4 (6) 24 (56)

Surgery history, n (%)

Yes 64 (57) 16 (14)
<0.001

No 5 (4) 27 (25)

Chemotherapy, n (%)                                                                        

Yes 52 (47) 35 (31)
0.494

No 17 (15) 8 (7)

Radiotherapy, n (%)                                                                          

Yes 48 (44)                           22 (20)
0.045

No 21 (18)                           21 (18)

PFS: Progression-free survival; SD: Standard deviation; IDC: Invasive ductal 
carcinoma; ER: Estrogen receptor; N/A: Not available; PR: Progesterone 
receptor; HER2: Human epidermal growth factor receptor 2, TNM: Tumor, 
node, and metastasis

*: Includes TNM stages I, IIA, IIB, and IIIA 

**: Includes TNM stages IIIB and IIIC

Table 4. Patient characteristics according to five-year PFS

Variables Patients 
who 
achieved 
five-year 
PFS (n = 66)

Patients 
who did 
not achieve 
five-year 
PFS (n = 46)

p-value

Age, mean ± SD 58±13 60±13 0.475

Primary tumor 
size (mm), median 
(minimum-maximum)

25 (13–62) 38 (15–100) <0.001

Histopathological subtype, n (%)

IDC 40 (60) 24 (52)
0.285

Others 26 (40) 22 (48)

ER status, n (%)

ER (+) 51 (78) 28 (61)

0.046ER (-) 14 (21) 13 (28)

N/A 1 (1) 5 (11)

PR status, n (%)

PR (+) 48 (73) 25 (54)

0.037PR (-) 17 (26) 16 (35)

N/A 1 (1) 5 (11)

HER2 status, n (%)

HER2 (+) 20 (30) 13 (28)

0.919HER2 (-) 45 (69) 28 (61)

N/A 1 (1) 5 (11)

Axillary metastasis, n (%)

Present 32 (48) 40 (87)
<0.001

Absent 34 (52) 6 (13)

TNM stage, n (%)

Early* 29 (44) 4 (9)

<0.001Locally advanced** 34 (51) 17 (37)

Distant metastatic 3 (5) 25 (54)

Surgery history, n (%)

Yes 61 (54) 19 (17)
<0.001

No 5 (4) 27 (25)

Chemotherapy, n (%)  

Yes 49 (44) 38 (34)
0.360

No 17 (15) 8 (7)

Radiotherapy, n (%)

Yes 48 (44)                           22 (20)
0.045

No 21 (18)                           21 (18)

PFS: Progression-free survival; SD: Standard deviation; IDC: Invasive ductal 
carcinoma; ER: Estrogen receptor; N/A: Not available; PR: Progesterone 
receptor; HER2: Human epidermal growth factor receptor 2; TNM: Tumor, 
node, metastasis

*: Includes TNM stages I, IIA, IIB, and IIIA 

**: Includes TNM stages IIIB and IIIC



361

Bülbül et al. PET Texture Analysis and PFS in Breast Carcinoma

Figure 3. LASSO regression coefficients of the features used to predict disease progression

LASSO: Least absolute shrinkage and selection operator

Table 5. Performance of different machine learning methods in predicting one-year progression in the testing set

Using texture features alone Combining texture features with clinicopathological 
parameters

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Random 
forest

90 69 84 55 0.739 90 90 69 83 80 0.923 83

Naive 
Bayes

83 75 93 52 0.857 81 82 83 89 73 0.907 83

Neural 
network

90 44 86 54 0.782 81 84 59 78 68 0.867 75

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve

Table 6. Performance of different machine learning methods in predicting three-year progression in the testing set

Using texture features alone Combining texture features with clinicopathological 
parameters

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Random 
forest

82 46 74 59 0.758 70 86 75 86 75 0.933 83

Naive 
Bayes

78 61 78 61 0.804 72 80 82 89 70 0.917 81

Neural 
network

82 64 81 67 0.828 76 80 61 79 63 0.898 73

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve
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Figure 4. Receiver-operating characteristic curves of models incorporating texture features and clinicopathological parameters for predicting 
(a) one-year, (b) three-year, and (c) five-year progression-free survival
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Discussion and Conclusion

It is well established that conventional PET/CT parameters provide 
valuable prognostic information in breast cancer. Qu et al. (6) followed 
125 patients with breast cancer for five years and demonstrated that 
higher SUVmax, metabolic tumor volume, and total lesion glycolysis 
values measured from the primary lesion were associated with increased 
rates of local recurrence and/or distant metastasis (8). Similarly, in a 
meta-analysis, Diao et al. (17) reported that higher SUVmax values in 
the primary tumor were associated with an elevated risk of recurrence 
or progression but SUVmax had no significant effect on overall survival 
(OS). 

PET/CT TA combined with ML has been used to predict PFS or OS in 
various malignancies (18-21). TA reflects tumor heterogeneity, which 
is influenced by multiple factors beyond a single tumor characteristic, 
including tumor microenvironment, grade, genetic profile, and 
immunohistochemical expression. Given that the smallest volumetric 
unit in imaging is a voxel, TA essentially analyzes how neighboring 
voxels relate to each other, which may reveal underlying prognostic 
features of the tumor. Nevertheless, despite its potential, TA is not yet 
widely adopted in routine clinical practice. Existing studies, most of 
which are retrospective, suggest that TA could help identify patients 
at high or low risk of recurrence or metastasis. However, results from 
prospective studies with standardized methodologies are still necessary. 
Previous research has also examined the relationship between PET/
CT TA and survival in breast cancer (10, 22, 23), although most 
investigations have focused on the association between TA and 
histological or immunohistochemical parameters or on predicting the 
response to neoadjuvant therapy (9, 11, 24). 

In the current study, we focused on the relationship between PET-
derived TFs and PFS in patients with breast cancer. Among the 
148 TFs listed in Supplementary Table 1, many showed statistically 
significant differences between patients who achieved one-, three-, and 
five-year PFS and those who did not. ML models incorporating TFs 
and clinicopathological parameters successfully predicted one-, three-, 
and five-year PFS. Xu et al. (25) also attempted to predict PFS in 
breast cancer using TFs and clinical parameters and showed that the 

model combining TFs and clinical data outperformed models that 
used TFs or clinical variables alone. Importantly, their model remained 
successful in an external validation group. In our study, the addition of 
clinicopathological parameters to ML models similarly improved their 
predictive performance. Notably, model specificity increased, which 

significantly contributed to performance enhancement. However, we 
did not conduct external validation. 

Yoon et al. (22) found that values above the threshold value for high-
intensity zone emphasis and high-intensity short-zone emphasis 
among PET/CT-derived TFs were associated with shorter PFS in 
patients with LABC. However, that study did not investigate the 
effects of clinicopathological prognostic parameters or use ML, and 
it had a shorter median follow-up (17.3 months) than our study (112 
weeks). In contrast, our study predicted PFS using both TFs alone and 
combined with clinicopathological parameters through ML.

In a prospective study investigating PET/CT-derived TFs in patients 
with LABC, TFs were associated with more aggressive tumor 
phenotypes. Cox regression analysis showed that certain features could 
predict longer DFS and OS (10). However, this study, like Yoon et 
al. (22), did not use ML or assess the effects of clinicopathological 
prognostic variables. In another study examining the relationship 
between PET/CT-derived TFs and clinicopathological parameters in 
patients with ER (+) and HER2 (-) breast cancer, high entropy values 
were linked to shorter event-free survival (23). The authors evaluated 
the effects of only two TFs (entropy and homogeneity) on event-free 
survival and did not use ML. TFs offer a mathematical representation 
of tumor heterogeneity via imaging. Given that heterogeneity may 
result in treatment resistance or failure, TA could reasonably be 
expected to predict outcomes such as PFS, supported by both the 
previous study and the present one.

Zheng et al. (26) predicted DFS in patients who did not achieve 
pathological complete response after neoadjuvant chemotherapy 
by integrating clinical, radiomic, and deep learning features. Their 
combined model outperformed those based on single feature sets, 
with AUC values of 0.889 and 0.938 for three- and five-year DFS, 
respectively. Similarly, our study demonstrated that combining TFs 
with clinicopathological parameters improved the prediction of PFS 
compared to using either alone.

Classical prognostic factors in breast cancer, such as tumor size, 
axillary lymph node metastasis, tumor, node, and metastasis stage, 
histopathological subtype, and hormone receptor status, have long 
been validated in the literature (27). Although our study primarily 
focused on imaging features, we observed that larger primary tumor 
size, presence of axillary and distant metastases, and ER (-) and PR (-) 
status were associated with disease progression.

Table 7. Performance of different machine learning methods in predicting five-year progression in the testing set

Using texture features alone Combining texture features with clinicopathological 
parameters

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

AUC Accuracy 
(%)

Random 
forest

78 62 78 62 0.797 72 90 69 83 80 0.870 82

Naive 
Bayes

84 72 84 75 0.843 81 82 83 89 73 0.907 83

Neural 
network

82 66 80 68 0.780 76 84 59 78 68 0.867 75

PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under the curve
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Study Limitations

Our study has several limitations. First, it was a retrospective, single-
center study with a relatively small sample size. This limited our 
ability to analyze specific subgroups, such as patients with a particular 
histopathological subtype or hormone receptor profile (e.g., triple-
negative). Second, for technical reasons, patients with primary tumors 
having a metabolic volume of less than 64 voxels on PET were 
excluded; therefore, our findings may not be generalizable to tumors 
with a low metabolic volume. Third, the median follow-up period may 
have been insufficient, as breast cancer can recur even five to 10 years 
after treatment. Fourth, mammography and/or breast US were used 
to detect local recurrence during follow-up, with breast MRI reserved 
for equivocal cases. Lastly, the ML models were trained on 70% 
and tested on 30% of the data from the same patient cohort. While 
internal validation was performed, external datasets were not available 
for independent validation due to the single-center nature of the study.

ML models incorporating PET/CT-derived TFs and 
clinicopathological parameters may assist in predicting progression 
during the pre-treatment period in patients with invasive breast 
carcinoma. Predicting disease progression may allow clinicians to 
manage neoadjuvant and adjuvant treatment more effectively for 
patients who are at high risk of disease progression. If technical 
challenges, such as harmonizing PET/CT images from different 
centers and standardizing segmentation methods, can be resolved, TA 
may then be integrated into routine PET/CT workflows.
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Supplementary Table 1. First order and second order PET texture features that extracted from the three-dimensional 

range of interest

First order texture features Name of the texture feature

Morphological

Volume, approximate volume, voxels counting, surface area, surface to volume ratio, 
compacity, compactness 1, compactness 2, spherical disproportion, sphericity, aspehicirty, 
max value coordinates, center of mass, weighted center of mass, hoc max, hoc max 
normalized with radius ROI, hoc max normalized with radius sphere, hocpeak 0.5 mL, 
hocpeak 0.5 mL normalized with radius ROI, hocpeak 0.5 mL normalized with radius sphere, 
hocpeak 1 mL, hocpeak 1 mL normalized with radius ROI, hocpeak 1 mL normalized with 
radius sphere, centre of mass shift, centre of mass shiftmax normalized with radius ROI, 
centre of mass shiftmax normalized with radius sphere, maximum 3d diameter, sphere 
diameter, integrated intensity.

Intensity-based

Mean, variance, skewness, kurtosis, median, minimum gray level, 10th percentile, 25th 

percentile, 50th percentile, 75th percentile, 90th percentile, standard deviation, maximum 
grey level, interquartile range, range, mean absolute deviation, robust mean absolute 
deviation, median absolute deviation, coefficient of variation, quartile coefficient of 
dispersion, are under curve csh, energy, root mean square, total lesion glycolisis,

Local intensity-based
Intensity peak discretized volume sought (0.5 mL), global intensity peak (0.5 mL), intensity 
peak discretized volume sought (1 mL), global intensity peak (1 mL), local intensity peak.

Intensity-histogram

Intensity histogram mean, intensity histogram variance, intensity histogram skewness, 
intensity histogram kurtosis, intensity histogram median, intensity histogram minimum 
grey level, intensity histogram 10th percentile, intensity histogram 25th percentile, 
intensity histogram 50th percentile, intensity histogram 75th percentile, intensity histogram 
90th percentile, intensity histogram standard deviation, intensity histogram maximum 
grey level, intensity histogram mode, intensity histogram interquartile range, intensity 
histogram range, intensity histogram mean absolute deviation, intensity histogram 
robust mean absolute deviation, intensity histogram median absolute deviation, intensity 
histogram coefficien of variation, intensity histogram quartile coefficien dispersion, 
intensity histogram entropy log10, intensity histogram entropy log2, area under curve csh, 
uniformity, root mean square, maximum histogram gradient, maximum histogram gradient 
grey level, minimum histogram gradient, minimum histogram gradient grey level.

Local intensity histogram
Intensity peak discretized volume sought (0.5 mL), global intensity peak (0.5 mL), intensity 
peak discretized volume sought (1 mL), global intensity peak (1 mL), local intensity peak.

Second order texture features

Intensity-based rim Min, mean, stdev, max, counting voxels, approximate volume, sum.

Intensity histogram rim Min, mean, stdev, max, counting voxels, approximate volume, sum.

Gray-level co-occurrence matrix (GLCM)

Joint maximum, joint average, joint variance, joint entropy log2, joint entropy log10, 
difference average, difference variance, difference entropy, sum average, sum variance, 
sum entropy, angular second moment, contrast, dissimilarity, inverse difference, normalized 
inverse difference, inverse difference moment, normalized inverse difference moment, 
inverse variance, correlation, autocorrelation, cluster tendency, sluster shade, cluster 
prominence.

Neighboring gray tone difference matrix 
(NGTDM)

Coarseness, contrast, busyness, complexity, strength.

Gray-level run-length matrix (GLRM)

Short runs emphasis, long runs emphasis, low grey level run emphasis, high grey level run 
emphasis, short run low grey level emphasis, short run high grey level emphasis, long run 
low grey level emphasis, long run high grey level emphasis, grey level nonuniformity, run 
length nonuniformity, run percentage.

Gray-level size zone matrix (GLSZM)
Small zone emphasis, large zone emphasis, low grey level zone emphasis, high grey level 
zone emphasis, small zone low grey level emphasis, small zone high grey level emphasis, 
large zone low grey level emphasis, large zone high grey level emphasis.

PET: Positron emission tomography; ROI: Region of interest


