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Introduction

Breast cancer is one of the most prevalent and challenging diseases 
in the field of oncology. Given the diverse subtypes and variable 
responses to treatment, accurate diagnosis, prognosis, and prediction 
of treatment outcomes are vital for effective management. Microscopic 
examination, though reliable, is subject to known limitations, 
including intra- and inter-observer variability. In the era of artificial 
intelligence (AI), machine learning (ML) and deep learning (DL) 
algorithms enhance the ability of histopathologists to make more 
accurate and reproducible diagnoses. These technologies offer a 
plethora of advances, such as interpreting complex patterns in breast 
cancer histology, streamlining time-consuming tasks like lymph node 
metastasis detection, or scoring predictive immunohistocemical 

biomarkers faster and in a more accurate way, ultimately leading to 
better patient outcomes and more personalized treatment plans.

AI, encompassing ML and DL techniques, offers robust tools for 
analyzing complex datasets and uncovering patterns that may be 
imperceptible to humans. In breast cancer care, AI applications 
can aid in tasks ranging from automating histopathological analysis 
to predicting treatment outcomes. The emergence of biomarkers 
evaluable through immunohistochemistry (IHC) and the inclusion of 
parameters, such as tumor infiltrating lymphocyte (TIL) percentage 
and treatment effects in synoptic reports have rendered the reporting 
process for breast cancer increasingly detailed and labor-intensive (1, 
2). The evaluation of these parameters, however, is relatively subjective, 
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Key Points

•	 Artificial intelligence (AI) can assist pathologists in enhancing the precision of molecular assessments in breast cancer, while also reducing the time 
required for evaluation.

•	 AI has the potential to predict key molecular markers, including HER2 status, BRCA mutations, and homologous recombination deficiency, directly 
from Hematoxylin & Eosin (H&E) slides.

•	 AI is best utilized as a complementary tool, working in tandem with pathologists to optimize the diagnostic workflow and ensure the most accurate 
and timely care for patients.

ABSTRACT

Artificial intelligence (AI) and digital pathology are transforming breast cancer management by addressing the limitations inherent in traditional 
histopathological methods. The application of machine learning algorithms has enhanced the ability of AI systems to classify breast cancer subtypes, 
grade tumors, and quantify key biomarkers, thereby improving diagnostic accuracy and prognostic precision. Furthermore, AI-powered image analysis has 
demonstrated superiority in detecting lymph node metastases, contributing to more precise staging, treatment planning, and reduced evaluation time. The 
ability of AI to predict molecular markers, including human epidermal growth factor receptor 2 status, BRCA mutations and homologus recombination 
deficiency, offers substantial potential for the development of personalized treatment strategies. A collaborative approach between pathologists and AI 
systems is essential to fully harness the potential of this technology. Although AI provides automation and objective analysis, human expertise remains 
indispensable for the interpretation of results and clinical decision-making. This partnership is anticipated to transform breast cancer care by enhancing 
patient outcomes and optimizing treatment approaches.

Keywords: Artificial intelligence; breast cancer; pathology; AI

Corresponding Author: 
Nilgün Kapucuoğlu MD; kapucuoglun@gmail.com

Received: 19.12.2024
Accepted: 17.02.2025

Epub: 03.03.2025

1Graduate School of Health Sciences, Koç University Faculty of Medicine, İstanbul, Turkey
2Department of Pathology, Başakşehir Çam and Sakura Hospital, İstanbul, Turkey
3Koç University & İş Bank Artificial Intelligence Center, Koç University, İstanbul, Turkey
4Research Center for Translational Medicine, Koç University, İstanbul, Turkey
5Department of Pathology, Koç University Faculty of Medicine, İstanbul, Turkey

 Ayşe Hümeyra Dur Karasayar1,2,  İbrahim Kulaç1,3,4,5,  Nilgün Kapucuoğlu5

Advances in Breast Cancer Care: The Role of Artificial 
Intelligence and Digital Pathology in Precision Medicine

DOI: 10.4274/ejbh.galenos.2025.2024-12-8

https://orcid.org/0000-0003-3820-0430
https://orcid.org/0000-0003-2003-7567
https://orcid.org/0000-0002-0016-6479


Eur J Breast Health ﻿

necessitating the development of more standardized methods and the 
use of objective tools to ensure consistency and reliability in reporting.

By addressing the need for reproducibility and leveraging the vast 
datasets generated from histological slides, AI can augment the 
capabilities of histopathologists and oncologists, leading to enhanced 
accuracy and efficiency in breast cancer management.

The aim of this review was to provide a comprehensive overview of the 
current state of AI in breast pathological analysis with its diagnostic, 
prognostic, and predictive aspects. The techniques employed, the 
clinical implications, and the challenges that need to be addressed for 
broader implementation will all be addressed in the following article.

Breast Cancer Detection and Classification

The accurate classification of breast cancer is critical, as each subtype 
responds differently to treatment protocols. Misclassification can 
lead to suboptimal treatment decisions and compromised patient 
outcomes. To address this challenge, a comprehensive evaluation of 
morphological, IHC, and molecular features is essential. These tools 
hold the potential to significantly reduce time required for diagnosis 
while increasing accuracy, allowing for quicker therapeutic decisions 
and high concordance (3-6). The emergence of AI in the field of breast 
cancer classification marks a significant departure from conventional 
diagnostics, making a more nuanced and comprehensive analysis of 
tumors possible for future discoveries.Among notable contributions to 
this field, Cruz-Roa et al. (5) and Fondón et al. (6) have demonstated 
the potential of AI in detecting invasive ductal carcinoma within the 
surrounding breast parenchyma. Studies such as those by Yamamoto 
et al. (3), Han et al. (4) and Sharma and Mehra (7) have shown how 
DL models can classify breast cancer with remarkable accuracy. Han 
et al. (4) further illustrated the ability of AI algorithms to distinguish 
between ductal, lobular, mucinous and papillary morphology of 
breast carcinoma as well as benign proliferative lesions of both 
stroma and epithelium. Sandbank et al. (8) have taken this a step 
further by developing an algorithm capable of distinguishing between 
low- and high-grade in situ ductal and lobular carcinoma, as well 
as differentiating in situ from invasive carcinoma. In addition, the 
algorithm was reported to be adept at differentiating atypical ductal 
hyperplasia from ductal carcinoma in situ. By distinguishing between 
low- and high-grade in situ lesions and between atypical ductal 
hyperplasia and ductal carcinoma in situ, this algorithm addresses 
one of the most critical challenges in histopathology - the accurate 
classification of early-stage lesions that carry different prognostic 
implications. Such precise differentiation is important for determining 
the appropriate treatment pathway, thereby reducing the likelihood of 
overtreatment or undertreatment.

Breast Cancer Grading

Cancer grading is widely recognized as the most important prognostic 
factor for the majority of tumor types, including breast cancer. However, 
intra- and inter-observer variability, coupled with the inherent 
subjectivity in histopathological assessment, makes histological grading 
far from perfect. While promising, molecular methods are often time-
consuming and costly. This is where AI may again be of benefit with a 
transformative potential. AI algorithms, capable of stratifying tumors 
based on features beyond traditional morphology, offer a promising 
avenue for the future of cancer diagnostics.

The integration of AI in the histological grading of breast cancer 
marks a significant advance in pathological assessment, offering 
enhanced accuracy, reproducibility, and efficiency. The complexity of 
breast cancer diagnostics, characterized by diverse histopathological 
features, has historically posed challenges for consistent and reliable 
grading. Subsections like mitotic figure count, tubule formation, 
and nuclear grading are revolutionized by the AI models offering 
a predictive accuracy that enhances human analysis. This level of 
granularity in grading is not merely academic; it directly translates to 
more accurate patient prognoses and informs treatment efficacy. AI-
driven approaches, particularly DL models, address these issues by 
providing objective analyses (Table 1).

Evaluation of Tubule Formation

One of the components of histological grading of breast cancer is 
assessment of tubule formation. Romo-Bucheli et al. (9) demonstrated 
the potential of DL classifiers in identifying tubule formation in 
estrogen receptor-positive (ER+) breast cancer whole slide images. 
Their findings showed a strong correlation between the tubule 
formation indicator and genetic risk categories, suggesting that 
automated quantification can offer a more consistent method for 
assessing tumor aggressiveness. Mantrala et al. (10) also demonstrated 
that AI models could accurately assess tubule formation, matching the 
performance of experienced pathologists and reducing inter-observer 
variability. This consistency is key to reliable prognostic evaluations 
and tailored treatment strategies.

This advance aids personalized treatment decisions by providing 
a reliable metric for tumor grading, opening up a new avenue for 
correlating histological features with genomic assays. This correlation 
is important as it could potentially reduce the need for costly genetic 
testing by substituting it with AI analysis of standard histological 
slides, making prognostic testing more accessible and cost-effective.

Counting Mitoses

Counting mitoses, a pivotal component of breast cancer grading, is 
also one of the most time-consuming processes for histopathologists 
from all levels of expertise. It is known to have significant inter- and 
intra-observer variability, yet it is directly associated with tumor 
aggressiveness and grading. AI has demonstrably enhanced the 
reliability of mitotic figure detection by removing time constraints 
and variability. Studies by Balkenhol et al. (11) and Li et al. (12) 
demonstrated the clear advantages of DL-based automated mitotic 
counting over traditional manual methods. Moreover, Pantanowitz et 
al. (13) and Nateghi et al. (14) addressed this issue by integrating an 
AI tool designed for mitotic figure detection. Their findings indicated 
significant improvements in accuracy, precision, and sensitivity in 
tumor proliferation rate assessment. These findings improve the 
consistency in grading by reducing interobserver variability, enhancing 
both workflow efficiency and diagnostic confidence.

Nuclear Grade Assessment

Nuclear grading, which involves assessing nuclear size, shape, and 
pleomorphism, can be subjective due to the variations in human 
interpretation. It requires expertise and, on many occasions, it is not 
an easy task to distinguish nuclear grade 1 from 2 or 2 from 3. Thus, 
grade 2 has been used as a safety net for many pathologists since this 
differentiation is more challenging simply due to inability to notice 
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subtle differences through the human eye. This subjectivity introduces 
variability into the diagnostic process, which can impact both grading 
accuracy and prognostic evaluations​.

A significant advance in breast cancer grading lies in the use of DL 
models to enhance the stratification of intermediate Nottingham 
Histological Grade (NHG) 2 cases, which historically pose challenges 
due to their variability and intermediate prognostic value. By 
analyzing whole-slide histopathology images, these models identify 
subtle morphological patterns that differentiate NHG 2 tumors into 
lower- and higher-risk groups, mirroring the characteristics of NHG 1 
and NHG 3 (15). This approach offers prognostic insights comparable 
to molecular assays but is faster, more cost-effective, and uses routine 
Hematoxylin and Eosin (H&E) slides. 

AI models, such as those highlighted by Elsharawy et al. (16), can 
standardize the grading process, reducing variability and improving 
prognostic evaluations. Similarly, the study by Mantrala et al. (10) 

confirmed that AI could match human performance in grading 
nuclear pleomorphism, thus mitigating inconsistencies among 
pathologists and providing more reliable prognostic information. 
Their work showed that AI could successfully detect morphological 
attributes of the nucleus which are key to determining tumor grade, 
and provide survival stratification across various patient cohorts​. These 
AI tools are not yet designed to replace the human eye but rather to 
enhance the histopathologist’s ability to detect the subtle changes that 
can significantly impact the course of treatment (10, 15, 17). This 
integration supports more informed clinical decision-making and 
facilitates personalized treatment strategies, ultimately improving 
patient care and outcomes.

Biomarker Quantification

ER, PR and HER2 Evaluation

Accurate and objective assessment of biomarkers plays a vital role 
in breast cancer diagnosis,  prognosis prediction,  and treatment 

Table 1. Major AI-based digital pathology applications for classification and grading of breast cancer

Year Author(s) Study aim # of
Patients/
patches

AI approach used Performance metrics

2017
Yamamoto et 
al. (3)

Detection and classification of 
ductal carcinoma in situ

22 SVM 90.9% accuracy

2017 Han et al. (4)
Multi-classification of breast cancer 
histopathology images

82
Class structure-
based deep CNN

93.2% accuracy

2017
Cruz-Roa et 
al. (5)

Invasive tumor extent evaluation 349
Class structure-
based deep CNN

75.9% accuracy

2018
Fondón et al. 
(6)

Classify breast tissue samples into 
four malignancy levels 

150
Feature vector + 
SVM

75.8% accuracy

2020
Sharma and 
Mehra (7)

Automatic multi-classification of 
breast cancer histopathological 
images

82 SVM 94% accuracy

2022
Sandbank et 
al. (8)

Subtypes of invasive carcinoma and 
TIL evaluation

436 CNN AUC: 0.99

2016
Romo-Bucheli 
et al. (9)

Automated tubule nuclei detection 
and correlation with Oncotype DX

174 Deep neural network 89% accuracy

2022
Mantrala et al. 
(10)

Concordance in breast cancer 
grading by AI vs pathologists

137
Deep learning 
for semantic 
segmentation

65.9% accuracy

2019
Balkenhol et 
al. (11)

Deep learning-assisted mitotic 
counting for breast cancer

388 CNN R = 0.810 (95% CI: 0.76–0.86)

2018 Li et al. (12)
Detection, verification, and 
segmentation for mitosis

50
Deep detection 
network

F-score: 0.827

2020
Pantanowitz 
et al. (13)

Accurate and efficient mitosis 
counting

320
R-CNN (region-based 
CNN)

Improved accuracy with AI

2021
Nateghi et al. 
(14)

Mitosis detection in tumor 
proliferation prediction

73 SVM F-score: 0.738

2022
Wang et al. 
(15)

Improved breast cancer histological 
grading

>1000 CNN AUC: 0.91 (95% CI: 0.88–0.93)

2021
Elsharawy et 
al. (16)

Improved grading for refined 
prognostic classification

>1000 CNN AUC: 0.68 (95% CI: 0.65–0.71)

2021
Zewdie et al. 
(17)

Classification of breast cancer types 
and grades using deep learning

82 Deep CNN 96.75% accuracy

SVM: Support vector machines; CNN: Convolutional neural network; TIL: Tumor infiltrating lymphocytes; AUC: Area under curve; CI: Confidence interval, AI: 
Artificial intelligence
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planning.  The success of targeted therapies and endocrine therapy 
in breast cancer relies heavily on the precise quantification of 
estrogen and progesterone hormone receptors (ER and PR) and 
the human epidermal growth factor receptor 2 (HER2) protein. 
Traditional evaluation methods may be subjective and prone to 
errors. Fortunately,  recent advances in AI and digital image analysis 
(DIA) offer promising solutions for achieving consistent and reliable 
biomarker quantification. AI algorithms were initially developed for 
basic IHC evaluation tasks, such as counting positive cells (i.e., DAB-
stained brown cells) in manually selected tumor regions. However, 
with advances in tumor detection algorithms, these methods have 
evolved to integrate both tumor area and tumor cell detection and cell 
quantification. This enables not only the reliable counting of positive 
cells but also the assessment of their staining intensities, ultimately 
providing objective and consistent scores for biomarkers, including 
ER, PR, and Ki-67.

Recently, various groups have developed algorithms that have 
comparable performance to expert histopathologists, exhibiting 
high accuracy and consistency for the evaluation of ER, PR and Ki-
67 in breast cancer (18, 19). These algorithms demonstrated strong 
correlation with expert decisions, indicating its feasibility in a clinical 
setting. 

Similar results have been published for HER2 evaluation 
algorithms. Hartage et al. (20) validated their algorithm for HER2 
IHC assessment,  showing high correlation with fluorescent in 
situ hybridization results and improved consistency compared to 
manual scoring. Furthermore, Li et al. (21) investigated their model 
for HER2 IHC in predicting response to anti-HER2 neoadjuvant 
chemotherapy.  DIA provided quantitative analysis of HER2 
expression,  revealing a significant correlation with pathological 
complete response (pCR) rates.  This research suggests that DIA-
based HER2 assessment can improve the prediction of treatment 
response,  enabling more personalized treatment strategies. Notably, 
the assessment of HER2 status can be nuanced, with borderline cases 

posing a challenge for histopathologists. These findings highlight 
DIA’s potential to streamline workflows and enhance the consistency 
of biomarker evaluations, especially in cases with equivocal results after 
manual scoring.

In conclusion, AI and DIA hold immense potential to revolutionize 
breast cancer diagnostics and personalized medicine approaches.  By 
providing automated, standardized, and quantitative assessments, they 
can significantly improve the accuracy and consistency of biomarker 
analysis,  leading to better diagnosis,  more informed treatment 
decisions,  and ultimately,  improved patient outcomes.  While 
further research is needed to optimize AI algorithms and ensure the 
generalizability of DIA methods, the integration of these technologies 
in objective biomarker quantification is a very promising step forward 
(Table 2).

Ki-67 Proliferation Assessment

Ki-67 is a well-established prognostic marker for breast cancer. 
Traditionally, Ki-67 assessment involves manual counting, a time-
consuming and error-prone process. AI-powered Ki-67 quantification, 
as described by Bodén et al. (22), represents a significant advance 
in the field. Unlike manual counting, AI provides the option of 
comprehensive analysis of the entire slide, offering a more objective 
and robust approach (18, 22, 23). Bodén et al. (22) demonstrated that 
AI-based Ki-67 assessment achieved a high correlation with manual 
counts by histopathologists. This comprehensive Ki-67 analysis by AI 
could lead to more accurate prognoses and individualized treatment 
plans, particularly when deciding on the use of neoadjuvant therapy.

PD-L1 Scoring 

AI-assisted programmed death-ligand 1 (PD-L1) scoring, particularly 
through the combined positive score, has garnered significant attention 
for its potential to standardize and enhance the accuracy of IHC-based 
evaluations in cancer treatment. While its application has been better 
established in non-small cell lung cancer (NSCLC), there is still room 
for improvement in other organ cancers. In NSCLC, AI tools have 

Table 2. Major AI-based digital pathology applications for molecular profiling of breast cancer

Year First author Study aim #of 
Patients/
patches

AI approach used Performance metrics

2023
Abele et al. 
(18)

AI-assisted analysis of Ki-67 and 
hormone receptors

204 CNN
Agreement rates: Ki-67 
(87.6%), ER/PR (89.4%).

2022
Shafi et al. 
(19)

Validation of automated digital 
determination of estrogen receptor 
status

97
Computer vision-based 
DIA

Pearson’s r = 0.72

2020
Hartage et al. 
(20)

Validation of HER2 IHC digital 
imaging and FISH correlation

612
Computer vision-based 
DIA

Cohen’s kappa (κ): 0.71

2020 Li et al. (21)
Quantitative digital imaging of HER2 
IHC to predict response to therapy

153
Computer vision-Based 
DIA

HER2 DIA connectivity & 
pCR (OR = 136.08,  
p = 0.002)

2021
Bodén et al. 
(22)

Human-in-the-loop Ki-67 assessment 200
DCNN based object 
detection

Cohen’s kappa (κ): 0.84

2024 Dy et al. (23)
Improved accuracy and agreement in 
Ki-67 assessments

420 CNN Ki-67% error rate: 0.6%

CNN: Convolutional neural network; DIA: Digital image analysis; IHC: Immunohistochemistry; FISH: Fluorescence in situ hybridization; pCR: Pathological 
complete response; DCNN: Deep convolutional neural network; OR: Odds ratio; HER2: Human epidermal growth factor receptor 2; AI: Artificial intelligence; 
ER: Estrogen receptor; PR: Progesterone receptor
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already demonstrated considerable success in improving interobserver 
concordance. Algorithms, such as the dual-scale categorization-based 
DL methods have shown high concordance rates when compared to 
histopathologists, underscoring their potential in clinical applications ​
(24)​.

However, in other cancers including breast cancer, AI applications in 
PD-L1 scoring are in the earlier stages of research and development. 
Initial studies in breast cancer, especially multi-institutional 
studies, show promise in improving scoring consistency between 
histopathologists. AI-assisted models have demonstrated significant 
potential, boosting concordance from moderate to excellent levels 
(25, 26). These models aid in overcoming the subjectivity of human 
evaluation, especially when scoring tumor-infiltrating immune cells, 
which is key in determining patient eligibility for immunotherapy.

AI models for PD-L1 scoring need to be further refined and validated 
across various cancers. The adoption of AI in scoring systems for 
cancers beyond the lung, such as urothelial carcinoma and head-and-
neck squamous cell carcinoma, is expected to follow suit, offering 
an invaluable tool for clinicians to make more reliable, data-driven 
treatment decisions.

AI-Powered TIL and Tumor Microenvironment Assessment

AI has transformed how TILs and the broader tumor microenvironment 
(TME) are assessed, particularly in breast cancer. TILs, which are 
key immune response markers, play a critical role in the prognosis 
of cancers, such as HER2-positive and triple-negative breast cancer 
(TNBC). Traditionally, TIL evaluation, as with other histopathological 
evaluations, was subjective and prone to variability. However, AI offers 
a standardized and objective approach, reducing this variability and 
providing a consistent evaluation of the immune response within 
the TME (27, 28). AI-powered methods can quantify the spatial 
organization and interactions of TILs with other immune and tumor 
cells, which is vital when stratifying patients for immunotherapy. 
Studies have shown that AI-driven analysis of H&E and multiplex 
IHC images enhances the ability to predict treatment responses, such 
as pCR to chemotherapy, especially in HER2-positive and TNBC 
subtypes (27).AI models developed for this purpose have demonstrated 
higher accuracy in predicting pCR compared to manual assessments 
by histopathologists, underscoring the potential of AI to guide 
personalized treatment strategies (11, 29). AI also plays a critical role in 
advancing our understanding of the TME by identifying organizations 
and interactions that are difficult for human observers to discern. This 
includes quantifying the presence and behavior of immune cells like 
TILs, as well as mapping their interactions with tumor cells (30). This 
deeper analysis provides a more comprehensive understanding of the 
immune landscape, which is essential for optimizing treatment plans 
and enhancing the precision of immunotherapies​​.

AI-Powered Lymph Node Metastasis Detection

The accurate detection of lymph node metastasis is a key factor in 
staging and treatment planning in breast cancer.  However, for 
small occult tumor foci in lymph nodes, traditional pathological 
assessment can be tricky and, in some cases, requires additional IHC 
studies. Fortunately, recent advances in AI offer promising solutions for 
more precise lymph node metastasis detection, potentially removing 
the need for the additional IHC step, saving both time and resources 
(31-35).

Several studies have investigated the application of DL algorithms 
for lymph node metastasis detection in breast cancer.  Liu et al. (36) 
developed such an algorithm for identifying metastatic cancer cells 
in sentinel lymph node biopsies. The algorithm achieved impressive 
performance in detecting metastases,  even for small foci. The study 
also demonstrated the robustness of the algorithm when faced with 
common tissue sample variations, indicating its potential for reliable 
performance in diverse clinical settings. Furthermore,  the algorithm 
demonstrated a high sensitivity with low false positives, significantly 
reducing missed metastases compared to traditional methods.  

Steiner et al. (35) evaluated the impact of DL assistance in 
histopathologists’ evaluations of lymph nodes for metastatic 
breast cancer.  The AI model significantly improved diagnostic 
accuracy,  particularly for challenging micrometastases.  Using AI 
resulted in reduced errors and review time,  while also enhancing 
histopathological accuracy. Building on these findings, other groups 
have explored integrating AI into digital pathology workflows for 
efficient and accurate lymph node metastasis diagnosis (31). AI 
models, trained on a large dataset of H&E-stained slides, demonstrated 
high sensitivity and specificity in detecting lymph node metastases, 
significantly reducing false negatives. Importantly, the model accurately 
identified macro- and micrometastases, leading to more precise 
diagnoses (33, 37).Looking beyond breast cancer, a recent study Bándi 
et al. (38) explored continual learning strategies for cancer-independent 
detection of lymph node metastases. This approach aims to develop 
robust AI models that can detect metastases across various cancer types 
without requiring cancer-specific retraining.  The continual learning 
models demonstrated high accuracy and reliability across diverse 
datasets encompassing breast, colon, and head-and-neck cancers. This 
approach allows for continuous learning and adaptation,  enhancing 
the model’s generalizability across different clinical scenarios.  By 
employing a cancer-independent detection strategy,  these models 
can be more broadly applicable in clinical practice, offering a scalable 
solution for lymph node metastasis detection across various cancers.

Radiomics presents a promising, AI-driven approach for also improving 
axillary lymph node staging in breast cancer, leveraging medical 
imaging to create predictive models with high sensitivity, specificity 
and efficiency. Despite its potential to replace invasive procedures, 
limited validation, retrospective study designs, and lack of cost-
effectiveness analyses highlight the need for robust clinical trials and 
meta-analyses for clinical implementation (39). When combined with 
advances in AI-powered lymph node metastasis detection, including 
DL algorithms and cancer-independent models, radiomics can 
integrate seamlessly into digital pathology workflows. This integration 
offers a scalable solution for precise diagnosis and treatment planning 
across diverse cancer types.

The Future: AI-Assisted Molecular Prediction

Molecular subtyping of breast cancer is becoming increasingly 
important. Accurate subtype determination necessitates the evaluation 
of each tissue block of the tumor, yet reproducibility can be challenged 
by the heterogeneous nature of breast cancer tumors. The application of 
AI extends beyond traditional histopathological analysis. Its predictive 
capabilities are now at the molecular level. Farahmand et al. (40) used 
AI to predict HER2 status using H&E sections with high accuracy, 
which is vital for determining eligibility for targeted therapies, like 
trastuzumab. Similarly, the ability of AI to predict BRCA mutation 
status from histological images, as shown by Wang et al. (41) indicates 
its potential in genetic risk assessment and personalized medicine. 
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These holds promise for identifying patients carrying BRCA1 and 
BRCA2 mutations who are at high risk for developing hereditary breast 
cancer and guiding preventive measures. Several studies have shown 
promise in detecting molecular subtypes, particularly in distinguishing 
the basal-like subtype from luminal-A (42, 43). The objective must be 
to reduce the costs associated with molecular testing and mitigate the 
impact of limited experience by automating this classification process.

The integration of AI into molecular prediction also includes its 
potential to classify tumor recurrence risks based on histological 
features, circumventing the need for costly molecular assays. Whitney 
et al. (44) demonstrated that computer-extracted nuclear morphology 
features from routine H&E-stained images could accurately predict 
Oncotype DX risk categories for ER-positive breast cancer patients. 
By leveraging AI-driven analysis of nuclear architecture and shape, the 
study achieved significant classification accuracy, with an area under the 
curve of up to 0.83 in distinguishing between low and high recurrence 
risk groups. This method not only complements molecular testing but 
also offers a faster, cost-effective, and nondestructive alternative. As 
such, AI-driven histopathological tools are paving the way for precise 
recurrence risk stratification and personalized treatment planning, 
particularly in resource-limited settings where access to molecular 
assays may be constrained.

AI-Enhanced Homologous Recombination Deficiency Detection

Homologous recombination deficiency (HRD) status holds a 
substantial potential in determining the optimal treatment course for 
patients with breast cancer (45, 46). Traditional molecular methods 
to identify HRD status, while accurate, are often time-consuming, 
costly, and require specialized equipment, limiting their accessibility 
in resource-constrained settings. To address these challenges, AI has 
emerged as a promising solution. AI-powered tools use H&E slides to 
predict HRD status directly (47). These models analyze tissue samples 
with a high degree of accuracy, often surpassing traditional methods 
in identifying patients who may benefit from targeted therapies, like 
platinum-based chemotherapies and PARP inhibitors. By automating 
the detection process, AI enables faster, more scalable, and more 
accessible HRD testing.  Furthermore, the ability to identify a broader 
range of HRD-positive patients can lead to more effective treatment 
strategies and potentially enhance survival rates.

PIK3CA/AKT Pathway Alteration Detection

ML, and particularly DL, have shown progress in detecting actionable 
genetic alterations of breast cancer directly from the H&E-stained 
slides. These AI models can detect subtle morphological changes 
linked to genetic mutations, providing an innovative approach to 
molecular analysis (48, 49).

In TNBC, DL models have proven highly effective in predicting 
PIK3CA mutations, demonstrating their reliability in molecular 
diagnostics (48). Similar methods have been successfully applied across 
multiple cancer types, including breast cancer, with strong predictive 
outcomes for detecting mutations like PIK3CA (49). These models 
use convolutional neural networks to analyze thousands of image files 
from histopathology slides, allowing them to recognize patterns linked 
to genetic alterations. This method enhances real-time prediction, 
positioning AI as a valuable tool in advancing pathology practices.

Challenges, Risks and Practical Considerations in AI Integration 
for Breast Pathology

Despite its transformative potential, AI in breast histopathology 
presents several challenges and risks that must be carefully addressed. 

Algorithmic bias remains a significant concern, as AI models trained 
on limited datasets may not generalize well to diverse populations. 
This may result in disparities in diagnostic accuracy, particularly 
for underrepresented demographic groups. Ensuring diverse, 
representative, and well-annotated datasets is vital to avoid bias and 
ensure equitable AI-driven diagnostics across various demographics. In 
addition, validation in diverse clinical settings is important to ensure 
that AI tools perform consistently across different laboratories, imaging 
systems, and staining techniques. Another challenge is the potential for 
misdiagnoses if AI tools are improperly calibrated or misinterpreted by 
users. Over-reliance on AI without adequate human oversight could 
lead to errors in classification, particularly in borderline or equivocal 
cases. Therefore, robust validation, external benchmarking, and 
continued histopathologist involvement are essential to mitigate these 
risks.

Integrating AI into pathology workflows necessitates a strategic 
approach that accounts for multiple factors, including specialized 
training for histopathologists and other laboratory personnel, the 
financial implications of adopting AI-driven solutions, compliance 
with regulatory standards, and seamless interoperability with existing 
digital pathology systems. Foremost, training and skill development 
are critical, as histopathologists must become proficient in using AI-
assisted tools, interpreting AI-generated insights, and understanding 
the limitations of these systems. Institutions must invest in educational 
programs and workshops to ensure a smooth transition into AI-
enhanced diagnostics. Cost considerations also play a significant role 
in the adoption of AI in pathology departments. While AI has the 
potential to improve efficiency and accuracy, the initial investment 
in infrastructure, software licensing, and continuous updates can be 
substantial. Pathology laboratories will need to conduct cost-benefit 
analyses to determine the financial viability of AI integration and 
explore funding or reimbursement models to support implementation. 
Finally, interoperability with existing pathology systems is essential 
for efficient workflow integration. AI tools must be compatible with 
various digital pathology platforms, whole slide imaging systems, 
and laboratory information management systems to facilitate 
seamless data exchange and avoid disruptions in clinical workflows. 
Ensuring standardized data formats and adherence to industry-wide 
interoperability frameworks can help maximize the potential benefit 
of AI while maintaining workflow efficiency.

Importantly, regulatory compliance will be crucial, as AI-driven 
diagnostic tools must meet strict guidelines set by regulatory bodies 
such as the Food and Drug Administration, Conformite Europeenne, 
and CAP to ensure patient safety, reliability, and ethical use. Institutions 
must navigate complex approval processes and ensure that AI systems 
are validated for clinical use before deployment. Addressing all these 
factors will be essential for the successful implementation of AI in 
pathological assessment, allowing for improved diagnostic accuracy, 
streamlined workflows, and enhanced patient outcomes.

Discussion and Conclusion

The integration of AI into breast cancer pathological assessment 
represents a transformative advance toward achieving greater 
precision, standardization, and efficiency in diagnostic and prognostic 
assessments. AI systems enhance the capabilities of histopathologists 
by augmenting the accuracy of molecular-level evaluations, which is 
essential for personalized medicine. As AI technologies continue to 
evolve and are seamlessly integrated into clinical workflows, they are 
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poised to improve patient outcomes through rapid, reproducible, 
and detailed histopathological evaluation. AI algorithms, trained 
on annotated data provided by histopathologists, have the potential 
to reduce both cost and time associated with diagnostic evaluations 
while maintaining high-quality standards of care.The future of breast 
cancer pathology lies in the development of a synergistic relationship 
between AI and pathologists. The majority of the algorithms 
mentioned in this article operate as an adjunct to the pathologist, 
rather than a final decision maker. Human-in-the-loop systems offer 
an augmented diagnostic assistant or a second reader. AI technologies 
excel in increasing diagnostic accuracy, and detecting subtle patterns 
that may elude even the most trained human eye. Pathologists, with 
their clinical expertise and nuanced understanding of patient care, are 
essential for guiding the development of AI models, interpreting AI-
generated insights, and ensuring that these tools are applied ethically 
and responsibly in clinical practice. This collaboration between AI and 
human expertise holds immense promise for realizing the full potential 
of personalized breast cancer management, leading to more effective, 
individualized treatment strategies and improved clinical outcomes.
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