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Introduction

Introduction to Midkine (MDK)

The Midkine (MDK) gene, which has a retinoic acid (RA) receptor 
in its promoter, is a heparin-binding growth factor or cytokine (1). 
MDK, a 13-kDa cysteine-rich protein, is activated by retinoic acid 
and generated in large quantities throughout development, especially 
in the nervous system (2, 3). It is generally overexpressed in adult 
tissues after injury, disease, and healing (2). MDK gene expression in 

individuals who are healthy has been observed in a variety of organs, 
including the gastrointestinal system, kidney, spleen, lungs, and thyroid 
(4, 5). MDK expression in healthy tissues is usually low and many 
times lower than in malignant tissue (6-10). MDK promotes ligand-
dependent receptor activation, leading to a biological response (11, 
12). The MDK promoter region contains binding sites for Hypoxia-
Inducible Factor 1-alpha (HIF-1α), which, together with the retinoic 
acid receptor, has been associated with increased MDK expression in 
several cancers (13, 14). MDK was discovered in mouse embryonal 
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Key Points

•	 Midkine (MDK) is a protein that functions in both physiological and pathological processes.

•	 The role of MDK in physiological processes such as development, tissue repair and neuronal plasticity and its association with disorders such as 
neurodegenerative disease, inflammation and ischaemia have been investigated by many studies.

•	 MDK overexpression has been reported in many cancer types and identified as a biomarker in malignancy.

•	 MDK promotes proliferation, survival, metastasis and treatment resistance of cancer cells by activating pro-tumoral processes by activating many 
signalling pathways.

•	 MDK induces tumour formation through angiogenesis.

•	 Research suggests that MDK also functions as a molecule that regulates drug resistance.

•	 Many approaches to cancer therapy propose to target MDK.

•	 MDK and the proliferation of cancer cells have been suppressed by various approaches such as antibody-based therapies, oligonucleotides, oncolytic 
viruses and small molecules.

•	 However, further studies and experiments are required to determine the therapeutic relevance and efficacy of these therapies.

•	 This review focuses on the effects of MDK on cancer biology and its numerous roles in health and disease processes.

ABSTRACT

Midkine (MDK) is a protein that contributes to both physiological and pathological processes. Several studies provide insight into the different roles 
of MDK in development, tissue repair, neural plasticity, and health and disease processes. This research further examined how MDK contributed to 
conditions, including neurological diseases, inflammation, and ischaemia. Furthermore, MDK overexpression has been reported in many kinds of cancer 
and MDK is recognized as a malignancy marker. MDK stimulates pro-tumor activity by regulating a number of signaling pathways, which increase cancer 
cell proliferation, survival, metastasis, and treatment resistance. However, studies have shown that MDK also functions as a molecule that regulates drug 
resistance. Several cancer therapy techniques have been suggested to modify MDK function, including antibody-based therapies, oligonucleotides, oncolytic 
viruses, and small compounds. Further research and experimentation will be required to establish the therapeutic relevance and efficacy of these treatments. 
This review focuses on the role of MDK in cancer biology, as well as its multiple different roles in health and disease processes.
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cancer cells in 1988, and its molecular function is in embryonic 
development regulation (15, 16). MDK expression in mice increased 
only during the middle stages of gestation (days 8–11), after which 
it significantly decreased (15, 16). Only the kidneys in 15-day-old 
embryos showed significant MDK expression levels (15, 16). In one 
study, once RA was applied to cells in the early phases of embryonal 
cancer cell development, MDK mRNA levels increased (15, 16). The 
MDK family contains two members, MDK itself and pleiotropin 
(PTN) (16-18). These two proteins have similar receptors and 
physical attributes, including the ability to bind heparin (18). There 
are a number of evolutionarily conserved DNA sequences between 
MDK and PTN (17). Human MDK and PTN have been found to 
share around 50% sequence identity (17, 19). MDK and PTN have 
biological activity in processes such as fibrinolysis, anti-apoptosis, 
mitogenesis, and angiogenesis (18) (Figure 1). These activities 
suggest that growth factors play a role in cancer development (18). 
The increased expression of MDK and PTN in human carcinomas 
supports their function in cancer (18). MDK also plays a role in 
the pathogenesis of specific inflammatory diseases, including renal 
failure and vascular restenosis following angioplasty (18).

Midkine-Associated Signaling Pathways

MDK receptors include integrins, neurogenic locus notch homolog 
protein 2 (Notch2), anaplastic lymphoma kinase, the low-density 
lipoprotein receptor gene (LRP), and receptor type tyrosine protein 
phosphatase zeta (PTP-ζ) (20-24). MDK-binding integrins form α6β1 
and α4β1 heterodimers (21). Syndecanes, glipican-2, PG-M/versican, 
and neuroglycan C are a few such protein glycans that interact with 
MDK (6, 25-28). MDK consists of two domains and three antiparallel 
β-strands containing heparin-binding sites (3, 29, 30). This structure 
allows MDK to form molecular complexes with proteoglycans (3, 
29, 30). MDK binding to sulfated glycosaminoglycans interacts with 
a large number of crucial receptors, initiating a variety of signaling 
pathways (3, 29, 30) (Figure 2). While MDK is involved in critical 
processes such as development, reproduction, repair, inflammation, 
innate immunity, blood pressure regulation, neurite outgrowth, and 
angiogenesis, it also plays an important role in cancer formation and 

progression by stimulating cellular activity (1, 3, 25).MDK expression 
has been shown to be regulated by several kinds of transcription factors 
(30). The hormone estradiol (E2) has been shown to increase MDK 
mRNA levels in lung cancer cells (30). The MDK gene promoter 
region contains hypoxia response elements (14, 30). Under hypoxic 
conditions, HIF-1α binds to the MDK promoter region, increasing 
expression (13, 14). This promotes the vascularization of pulmonary 
arteries, the development of vasculature, and cancer cell survival 
(14, 30). The promoter region of MDK has a functional nuclear 
factor kappa B (NF-κB) binding site (30, 31). This leads to MDK 
overexpression under inflammatory conditions (31). In prostate cancer, 
tumor necrosis factor-α activates the NF-κB pathway (Figure 2) (31). 
The SP1 specificity protein 1 (SP1) gene is essential for embryonic 
development and early postnatal life (32).  SP1 expression has been 
reported to be more significant in human glioma tissues than in 
normal tissue, and it interacts with MDK in tumor development and 
progression (30, 32). Thyroid transcription factor 1 (TTF-1) regulates 
lung parenchymal growth and gene expression (30, 33). TTF-1 binds 
to TTF regulatory elements located in the 5′ region of the MDK 
promoter (33). TTF-null mice’s lungs showed no expression of MDK 
(33). Various transcription factors may regulate MDK in various 
tissues (30). MDK could stimulate tumor development by activating 
TGF-β receptors, Janus kinase/signal transducers and activators of 
transcription (STAT), and STAT3 (34). Mitogen-activated protein 
kinase (MAPK) pathways promote epithelial mesenchymal transition 
(EMT), which regulates cancer development and metastasis (29, 35). 
MDK induces EMT by interacting with β-catenin through WNT 
signaling and the estrogen receptor (ER) (13). MDK interactions with 
the MAPK/phosphoinositide 3 kinase (PI3K)/AKT pathway induce 
proliferation and angiogenesis (35, 36) (Figure 2). Finally, MDK may 
inhibit Caspase-3, which decreases apoptosis (36).

Role of Midkine in Inflammation

MDK is a growth factors known to regulate inflammation since it 
is associated with antibacterial proteins that stimulate the innate 
immune system (37). MDK expression increases during inflammatory 
processes, which leads to increased angiogenesis (38). MDK promotes 

Figure 1. MDK plays a role in essential processes including as development, reproduction, repair, inflammation, innate immunity, and 
angiogenesis by activating various signaling pathways

MDK: Midkine, *Created with Biorender.
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neutrophil adhesion during angiogenesis (39). This happens through 
increasing the affinity of β2-integrins and suppressing LRP1 (13). It 
has been shown that in mice, the lack of MDK reduces neutrophil 
and macrophage numbers during the early stages of fracture healing 
(38, 40). Furthermore, the role of MDK in the inflammatory process 
has been attributed to its expression in endothelial cells under hypoxic 
conditions (14, 16). MDK is capable of maintaining tissue viability in 
adults after hypoxic stress (5, 25). MDK expression in tissues increases 
markedly following ischemia (41-45). In this case, increased MDK 
suppresses apoptosis and protects the tissue by decreasing cell death 
(5). Additionally, it promotes tissue repair through angiogenesis (46-
48).Increased MDK during ischemia is characterized by an increase 
in blood MDK concentration (49). Serum MDK levels were shown 
to be significantly elevated in patients with heart failure than in the 
control group in studies on the treatment of the condition (49). MDK 
may induce neutrophil and macrophage migration to the injury site 
in renal ischemia-reperfusion damage, but it may decrease myocardial 
apoptosis in cardiac ischemia-reperfusion injury (21, 42, 50, 51). In 
endothelial cells, the PI3K/AKT and MAPK signaling pathways are 
critical for regulating vascular homeostasis and neovascularization 
(52, 53). AKT (protein kinase B) promotes the transcription of 
angiogenesis-related genes and refills tissue oxygen (54). Vascular 
endothelial growth factor alpha (VEGF-A) is a critical protein in the 
Chemokine (C-X-C motif ) Ligand 1/Macrophage Inflammatory 
Protein 2-(CXCL1/MIP-2)-induced angiogenesis that interacts with 
VEGF receptor 2 (VEGFR2) (Figure 2) (16). Overexpression of MDK 
may affect the angiogenesis process by increasing VEGF-A levels and 
cellular release (Figure 2) (55, 56). These findings suggest that MDK 
plays an important role in angiogenesis and vascular homeostasis (16). 
A study suggested that MDK might be an effective therapeutic target 
for Th1 cell-induced autoimmune disorders such as experimental 
autoimmune encephalomyelitis (16). Moreover, it has been shown that 

MDK may promote the survival of mature B lymphocytes through 
an autocrine pathway (Figure 2) (16). The data suggest that MDK 
has multiple functions and has significant effects on many different 
pathophysiological processes.

Anti-Bacterial and Anti-Apoptotic Properties of Midkine

A recent study showed that MDK has significant anti-fungal and anti-
bacterial effects (1, 16, 57-59). MDK contains a heparin-binding motif 
(Cardin-Weintraub Motif ), which is a common feature of antibacterial 
proteins, and MDK has been proposed to have antibacterial activity by 
disrupting the bacterial plasma membrane, in addition to antibacterial 
properties, especially against gram-positive organisms (16, 57, 58).
The anti-apoptotic activity of MDK has been associated with a 
number of pathological events, including cancer, neurogenesis, and 
tissue repair (16). MDK functions as an anti-apoptotic growth factor, 
which allows cancer cells to proliferate more efficiently (60, 61). For 
example, in developed G401 cells (derived from a rhabdoid tumor of 
the kidney), MDK has been shown to prevent apoptosis by increasing 
B-cell leukemia/lymphoma 2 (Bcl-2) protein expression (61). MDK 
is also known to suppress Caspase-3 activation through extracellular 
signal-regulated kinase (ERK) activation, which avoids neuronal death 
(62). In contrast, MDK has been shown to protect against cardiac 
ischemia-reperfusion (I/R) damage by increasing Bcl-2 and ERK 
levels, which inhibit cardiomyocyte apoptosis (42). MDK has been 
reported to decrease myocyte cell death by activating the PI3K/AKT 
signaling pathway (Figure 2) (63). MDK and Bcl-2 collaborate to 
suppress apoptosis, and Bcl-2 and ERK play critical roles in MDK’s 
anti-apoptotic activity (16). 

Midkine in Oxidative Stress and Cholesterol

Reactive oxygen species may cause oxidative stress due to an imbalance 
of pro- and anti-oxidants (64). One study found that following 5/6 

Figure 2. MDK is involved in cancer cell proliferation, survival, ECM remodeling anti-apoptosis, angiogenesis and EMT regulation through 
many different signalling pathways in tumor development

MDK: Midkine; EMT: Epithelial mesenchymal transition, *Created with Biorender.
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nephrectomy, MDK expression increased in tubular epithelial cells 
and infiltrating macrophages in the kidneys of MDK+/+ mice (65). 
In addition, oxidative stress increased MDK expression in capillaries, 
lung endothelium, and alveolar-capillary endothelial cells (65). 
Furthermore, it was demonstrated that MDK expression increased 
when angiotensin I (Ang I) was converted to Ang II by angiotensin-
converting enzyme (65).

MDK is expressed at extremely low levels in healthy arteries and 
veins (66). However, a recent study suggests an association between 
high blood MDK levels and serum total and low-density lipoprotein 
cholesterol levels (67). In apolipoprotein E (ApoE)-/- mice, MDK 
treatment has been shown to improve atherosclerotic plaque 
development (68). These findings suggest that MDK may have a role 
in the development of atherosclerosis (16, 68).

CNS and Midkine

The role of MDK in the central nervous system (CNS) has been 
studied extensively during development and in conditions such as 
traumatic brain injury (TBI) (21). MDK is expressed in the CNS 
during development and until mid-pregnancy, after which its mRNA 
levels decrease (29, 69). In mice, oligodendrocyte precursor cells 
express MDK before fetal astrocytes, neurons, and newly formed 
oligodendrocytes develop (69). In humans, fetal astrocytes are the 
main source of MDK in the CNS (69).

MDK is expressed early in cerebral infarction as well as in additional 
clinical conditions (43). MDK has been shown to function as a 
repairing neurotrophic factor in these situations, and its presence is 
recognized in damaged nerve regions (43). HIF-1α transcriptionally 
regulates MDK, a repair mechanism in hypoxia-induced diseases (21). 
Animal studies suggest that MDK mRNA and protein levels increase 
after short-term forebrain damage, but MDK expression increases in 
areas of traumatic spinal cord injury (44, 70). These findings indicate 
that MDK plays an important role in tissue repair in conditions such 
as brain damage and traumatic spinal cord injuries (70).

Secondary damage in TBI is caused by primary tissue damage, leading 
to disruption of the blood-brain barrier, immune cell infiltration into 
the brain, and neuroinflammation (71). In vivo studies suggested 
that a decrease in MDK has no effect on astrogliosis after TBI (72). 
Astrogliosis occurs when astrocytes respond to CNS injury by changing 
their transcriptional expression (73). Microglia respond to CNS injury 
in a similar fashion (74). However, it has been suggested that MDK 
may contribute to that injury in TBI by allowing immune cells to pass 
through the CNS (75).

Circulating MDK levels have also been shown to be significantly 
higher in patients with Alzheimer disease than in healthy individuals 
(5). This shows that MDK might be utilized as a marker in neurological 
disorders like Alzheimer’s disease. MDK’s representation in the CNS 
may be characterized as having a complicated process that MDK 
functions significantly throughout developmental stages but also in 
pathological situations such as TBI (21). Targeting MDK might be an 
effective approach for treating CNS-associated neoplastic conditions 
such as glioblastomas (21). These findings suggest that serum MDK 
levels might be used to diagnose and monitor a wide range of diseases. 
However, further research is required to support these findings (5).

Midkine as a Marker with Multiple Effects in Cancer

MDK overexpression has been reported in at least 20 distinct 
malignancies (5). Overexpression of MDK protein within tumors is a 
common feature of malignancy. MDK activates pro-tumoral activities 
in numerous cancer types via several signaling pathways (4, 12). 
MDK levels are frequently much greater in cancer patients than in 
healthy persons, and MDK expression has been shown to rise in direct 
proportion to the severity of illness (13, 53, 76-78). When tumors are 
surgically excised, circulating MDK levels often fall before increasing 
again when the cancer recurs (13). As a result, circulating MDK levels 
may act as a diagnostic, prognostic, or therapeutic marker for cancer 
(5).

MDK promotes cancer through a variety of processes (1). These 
mechanisms include cancer cell proliferation, survival, anti-apoptosis, 
angiogenesis, and EMT regulation (1, 79). MDK initiatives are 
simplified by specific receptor binding, which activates well-known 
downstream signaling pathways associated with tumor development 
and metastasis, including MAPK, PI3K/AKT, and ERK1/2 (Figure 
2) (1, 79).

MDK’s efficiency in promoting tumor development derives from 
its ability to trigger tumor angiogenesis (76). MDK is an effective 
pro-angiogenic factor (80, 81). Multiple studies have shown that 
MDK promotes angiogenesis, which enhances tumor development 
(13). In cancer cell culture studies with MDK overexpression, 
in vitro proliferation of endothelial cells increased, which led to 
angiogenesis (13, 80). The enhanced tumor development following 
subcutaneous MDK injection into nude mice has been attributed to 
increased microvessel density (76). This shows that endothelial cells 
are proliferating in the tumor (76). Furthermore, significant MDK 
expression has been found in tumor endothelial cells in human neural 
tumor tissues (82). A previous study focused on the interaction between 
the Notch2 receptor and MDK in pancreatic ductal adenocarcinoma 
(PDAC) cells (83). Soluble MDK has been demonstrated to stimulate 
Notch2 and its downstream targets, HES-1 and NF-kB/RelA (83). 
This suggests that MDK may regulate both phases of carcinogenesis 
(18).

MDK promotes tumor development partially by improving the 
probability of metastasis formation (84). MDK has been predicted 
to mediate metastasis through mitogenic, pro-inflammatory, and 
angiogenic activities (84-86). MDK interacts with TGF-β pathway 
proteins, which are necessary for EMT (Figure 2) (87-89). Furthermore, 
MDK regulates cell survival and proliferation through activating the 
PI3K and ERK signaling pathways (60, 90). MDK’s interaction with 
the WNT/β-Catenin pathway is a key regulatory mechanism in glioma 
growth (91). MDK expression is increased in glioma cells (13). The 
MDK proximal promoter has a T-cell factor/lymphoid enhancer factor 
(TCF/LEF) family binding site that interacts with β-Catenin (91).

MDK may promote metastasis through proteolytic enzyme networks 
(92, 93). Expanded human kallikrein (KLKs) play an important role 
in these networks (94). KLKs may stimulate cancer development 
through extracellular hydrolysis (95). MDK has been recognized 
as an important protein, especially for KLK7 and KLK9 (Figure 2) 
(95, 96). This suggests a potential role for the KLK7/9-MDK axis 
in cancer development and metastasis (95, 96). MDK promotes 
metastatic development in melanoma through the mammalian target 
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of rapamycin (mTOR)/VEGFR3 signaling pathway (97). MDK 
regulates the mTOR signaling pathway by interacting with heparan 
sulfate and lymphatic endothelial cells (97). These signals promote 
lymphangiogenesis and metastasis in the lymph nodes and lungs 
(97). Silencing MDK reduces lymphangiogenesis and metastasis (97). 
These data suggest that MDK regulates the mTOR signaling pathway 
in melanoma metastasis (13). In an in vitro study to determine the 
effects of MDK concentration on drug cytotoxicity, MDK’s effect 
on cells in the tumor microenvironment was studied in an ovarian 
cancer cell line (98, 99). MDK has been shown to stimulate the AKT 
signaling pathway in ovarian cancer cells, reducing the cytotoxic effect 
of cisplatin, whereas inhibiting MDK increased cisplatin cytotoxicity 
(98). Another study examining the role of MDK in the interaction 
between stromal cells and tumor cells showed that cancer-associated 
fibroblasts (CAFs) contribute to increased MDK levels in tumors and 
that CAF-derived MDK may promote cisplatin resistance (100).

MDK and Breast Cancer

Breast cancer is the world’s most prevalent malignant tumor (101). 
Metastases in distant locations are the leading cause of mortality 
in breast cancer patients (102, 103). In a study comparing gene 
expression levels in breast cancer, it was found that MDK gene 
expression increased in tumor tissues (104). Some research has focused 
on the function of MDK in breast cancer. Plasma MDK levels were 
measured in 111 patients with primary invasive breast cancer and 
25 patients with distant metastatic breast cancer (105). The results 
demonstrated that plasma MDK levels were markedly elevated in 
breast cancer patients compared to healthy controls (105). Although 
the mechanism is uncertain, plasma MDK levels in primary invasive 
carcinoma are significantly associated with the menopausal state. 
MDK is a substantially more effective biomarker for breast cancer than 
CA15-3, CEA, and NCCST-439, especially for individuals with initial 
invasive cancer (105). Furthermore, the MDK combination diagnoses 
breast cancer at significantly higher rates than the combination of two 
conventional tumor markers (CA15-3/CEA, CA15-3/NCCST-439, or 

CEA/NCCST-439) (105). As a result, MDK may be as effective, if not 
more so, than conventional markers in diagnosing breast cancer (105).
The upstream kinases LKB1, CAMKKβ, and TAK1 phosphorylate 
adenosine monophosphate protein kinase (AMPK) at the Thr172 
site (106). Among these kinases, the serine/threonine kinase, LKB1, 
regulates the conventional AMPK activation pathway, which has been 
clarified in cancer cells (107). It is well-established that LKB1 forms 
a heterotrimer with the pseudokinase STRAD and the scaffolding 
protein MO25 prior to self-phosphorylating at a number of amino 
acids to activate its own kinase activity (108). A recent study found that 
altering the LKB1-STRAD-MO25 complex reduced AMPKα Thr172 
phosphorylation levels and AMPK activity (109-111). In another study, 
intracellular MDK suppressed AMPK activation by interacting with 
LKB1 and STRAD to depolymerise the LKB1-STRAD-MO25 complex, 
decreasing LKB1 activity and phosphorylation of AMPKα (112). 
Reducing or maintaining extracellular MDK expression caused 
enhanced AMPKα phosphorylation (108). Furthermore, MDK has 
been shown to increase cancer cell proliferation by inhibiting the 
LKB1-AMPK pathway, which proved to be negatively associated 
with LKB1/AMPK signaling pathway activity (Figure 3) (108).
The treatment of locally advanced breast cancer is a combination of 
neoadjuvant chemotherapy (NCT), surgery, and adjuvant systemic 
and local treatments (113, 114). NCT increases the probability of 
breast-conserving surgery by minimizing the breast lesion, monitoring 
drug resistance, and determining prognosis and micrometastases (115). 
However, more than 80% of patients who get NCT do not respond 
effectively, causing risks that the treatment might delay surgery and 
drug resistance (116). As a result, early diagnosis of treatment response 
and resistance to chemotherapy may enhance the efficacy of NCT 
(117). In one study it was demonstrated that liquid biopsies, which 
are less invasive and less costly, were preferred, and that high levels of 
miR-1275 in plasma increased in response to NCT. However, reduced 
miR-1275 levels regulated chemoresistance in cancer stem cells by 
inhibiting the MDK/AKT pathway (Figure 3) (117).

Figure 3. MDK modulates breast cancer through a variety of signaling mechanisms

MDK: Midkine, *Created with Biorender.
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Interferons (IFNs) are a type of cytokine with antiviral, antiproliferative, 
and immunomodulatory properties (118). These cytokines play 
crucial roles in immune surveillance against cancer cells (119). 
IFN-γ increases anti-tumor immunity by directly targeting cancer 
cells (118, 120). Although IFN-γ has anti-tumor capabilities, it has 
been linked to an increased risk of metastasis in triple-negative breast 
cancer (TNBC) (121). A study showed that increasing IFN-γ levels 
increased MDK levels in TNBC cells (122). IFN-γ stimulates STAT1, 
promoting downstream signaling (123). The study demonstrated that 
reducing STAT1 decreased IFN-γ-induced MDK activation across all 
cancer cell lines. The use of midkine inhibitor (iMDK) (124), a small 
molecule for therapeutic use, reduced MDK levels and IFN-γ-induced 
EMT activation in cells (Figure 3) (122). Inhibiting MDK can inhibit 
IFN-γ-induced cancer migration and metastases (122).

Deubiquitination, mediated by multiple deubiquitinases (DUBs), 
regulates substrate protein levels by cleaving ubiquitin chains and 
is involved in many kinds of physiological processes (125, 126). 
DUBs have been found to play an important role in extracellular 
matrix degradation (127), epithelial-mesenchymal transition (128), 
angiogenesis (129, 130), and circulating tumor cell behavior (131). 
However, the role and mechanisms of DUBs in breast cancer metastasis 
are not established (103). In contrast, the ubiquitin regulator, ubiquitin 
specific protease 12 (USP12) is a member of the USP family that 
dehydrogenates and has been related to breast cancer (103). One study 
demonstrated that USP12 induced angiogenesis and metastasis by 
dehydrogenating and stabilizing the MDK protein (Figure 3) (103).

The immunological microenvironment in inflammatory breast 
cancer (IBC) is still undetermined, although one study demonstrated 
an interaction between the expression of the tetraspanin protein, 
CD151, and increased macrophage accumulation in malignant 
regions (132). It was established that higher CD151 expression and 
the amount of macrophages inhabiting the tumor were associated with 
a better response to chemotherapy in patients (132). IBC cells attract 
monocytes by many pathways, including CD151, MDK, integrin 
α6β1, and EV formation (Figure 3) (132).

NF-κB regulates several genes to enhance tumor cell proliferation, 
angiogenesis, differentiation, and metastasis across various cancer 
types (133). NR3C1, a member of the nuclear hormone receptor 
superfamily, encodes the glucocorticoid receptor (133). After binding 
to glucocorticoids, NR3C1 transfers from the cytoplasm to the 
nucleus and function as a transcription factor (134). In human cell 
lines, NR3C1/GR binds to the proximal RANKL promoter region, 
promoting RANKL transcription (135). High NR3C1/GR expression 
increased breast cancer growth and has a poor prognosis in TNBC 
and ER(-) subtypes (136, 137). A study showed NF-κB to be a crucial 
regulator, positively correlated with NR3C1 (138). Silencing MDK 
has been shown to inhibit breast cancer cell growth and migration 
(138). Transduction silencing of MDK inhibits the NF-κB pathway, 
resulting in reduced NR3C1 expression (138). MDK promotes breast 
cancer cell proliferation and migration by upregulating NR3C1 
expression and activating the NF-κB pathway (Figure 3) (138). 

Midkine Targeting

According to studies, MDK is a key regulator of drug resistance (15, 
30). Previous studies have demonstrated that MDK protects cancer 
cells against cannabinoid and doxorubicin treatments and MDK 
expression was shown to increase the effects of chemotherapeutic 
drugs on lymphoblastic leukemia cells (139-142). In addition, drug-

resistant gastric cancer cells were shown to express more MDK than 
drug-sensitive cells (143). Another study reported that decreased 
MDK expression enhances cisplatin resistance in oral squamous and 
renal carcinomas (144, 145). These findings show that MDK may 
produce either a drug-resistant or drug-sensitive cancer cell phenotype 
in different conditions (13).

MDK has been shown to be effective as a cancer biomarker at 
multiple stages, such as early disease identification, treatment response 
monitoring, and recurrence follow-up (5). Researchers are investigating 
ways to target MDK for cancer treatment since it plays a crucial role 
in tumor growth (30). An MDK antisense oligodeoxynucleotide was 
given to naked mice expressing rectal cancer cells, and tumor growth 
was significantly inhibited (146). Antisense oligonucleotides that 
target MDK effectively suppressed hepatocellular carcinoma (HCC) 
and increased its chemosensitivity to adriamycin (147).

Antibody-based therapeutics have been designed to target MDK (30). 
Monoclonal antibodies (mAbs) with high specificity for cell surface 
antigens are effective against cytotoxic pharmaceuticals (30). For 
example, anti-MDK mAbs combined with doxorubicin have been 
demonstrated to inhibit HCC proliferation (148). MDK-specific 
doxorubicin-conjugated single-chain variable fragments (scFv) showed 
similar characteristics (149). Another study showed that effective anti-
MDK antibodies suppressed the growth of osteosarcoma cells (150). 

In vitro viral therapy in pancreatic cancer cell lines is a different 
approach for treating peripheral tumors that express MDK (151). In 
this process, an oncolytic virus (adenovirus) containing part of the 
MDK promoter may eliminate tumor cells, and the process is carried 
out through tumor-selective replication (151). In contrast, siRNA or 
shRNA down-regulation of MDK has been shown to significantly 
inhibit PDAC growth (152). Another study found that knocking 
down MDK through siRNA increased cisplatin’s anti-tumor activity in 
human gastric cancer cells (153). However, negatively charged siRNAs 
have limited pass-through into cells since they are not membrane-
permeable and are swiftly eliminated by the kidneys due to their small 
size (154). They are also vulnerable to enzymatic degradation by serum 
endonucleases and RNAases, which may have a negative effect on their 
systemic distribution (154).

Metformin is utilized to treat Type II diabetes and is now being 
investigated as a potential anticancer drug since it affects MDK activity 
(30, 155). Metformin has been reported to beneficially interfere 
with the several MDK pathways that trigger cancer growth and its 
associated side effects (155). As a result, metformin may be effective as 
an MDK inhibitör (155).iMDK may decrease MDK expression while 
reducing cell growth and proliferation, possibly through blocking the 
PI3K signaling pathway (124). iMDK treatment of primary effusion 
lymphoma (PEL) cells led to cell cycle arrest in the G2/M phase in 
addition to a decrease in p-Cyclin-dependent kinase 1 levels (156). 
This might stimulate caspases, triggering PEL cell apoptosis (156). In 
studies of oral squamous cell carcinoma, iMDK treatment reduced 
CD31 expression, cell proliferation, and inhibited VEGF-induced 
angiogenesis (157). 

Besides pharmaceuticals targeting MDK, there are many approaches 
for increasing MDK expression levels (21). It has been shown that 
cytotoxic T-cells with enhanced MDK expression may lyse tumor 
cells, suggesting that MDK may have potential for cancer vaccine 
development (13, 21). Another study used MDK RNA aptamers to 
activate T regulatory cells, showing that autoimmune diseases may be 
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prevented (158). These findings suggest that MDK-targeted treatments 
may be effective in inhibiting cancer formation and reducing drug 
resistance (30).

Discussion and Conclusion

This review discusses the effects of the MDK in cancer biology, as well 
as additional functions for MDK in health and disease processes. The 
crucial role of MDK in physiological processes, such as development, 
tissue repair, and neuronal plasticity, as well as its association with 
diseases such as neurodegenerative disorders, inflammation, and 
ischemia, are explained in detail. MDK’s neuroprotective effects, 
impact on tissue regeneration, and potential effects  to regulate 
inflammatory processes contribute to its biological importance. In 
this regard, a better understanding of MDK’s cellular and molecular 
functions might lead to the development of innovative approaches for 
managing and treating a number of medical conditions. As a result, it 
is important to do more studies on MDK’s role in diseases and health 
issues. 

However, MDK’s effects on cancer cell proliferation, survival, 
metastasis, and drug resistance have been studied. Various techniques 
and therapeutic approaches involving the use of MDK as a target for 
cancer therapy are also discussed. The approaches described include 
antibody-based therapy, small chemical inhibitors such as iMDK, 
siRNA, and RNA Aptamers. The published evidence concerning 
MDK’s effects on cancer cell characteristics and its potential effects 
on cancer therapy shows that MDK plays an important biological 
role and that targeting it in cancer therapy has significant potential.A 
comprehensive understanding of the contribution of MDK to cancer 
biology could help in the development of innovative cancer therapies, 
as well as more effective cancer-fighting approaches. However, further 
study is required to identify these innovative approaches to cancer 
treatment and controlling the disease.
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